Effects of the presence of ions, at moderate to high concentrations, on dynamical properties of water molecules are investigated through classical molecular dynamics simulations using two well-known nonpolarizable water models. Simulations reveal that the presence of magnesium chloride (MgCl(2)) induces perturbations in the hydrogen bond network of water leading to the formation of bulklike domains with ''defect sites'' on boundaries of such domains: water molecules at such defect sites have less number of hydrogen bonds than those in bulk water. Reorientational autocorrelation functions for dipole vectors of such defect water molecules are computed at different concentrations of ions and compared with system of pure water. Earlier experimental and simulation studies indicate significant differences in reorientational dynamics for water molecules in the first hydration shell of many dissolved ions. Results of this study suggest that defect water molecules, which are beyond the first hydration shells of ions, also experience significant slowing of reorientation times as a function of concentration in the case of MgCl(2). However, addition of cesium chloride (CsCl) to water does not perturb the hydrogen bond network of water significantly even at higher concentrations. This difference in behavior between MgCl(2) and CsCl is consistent with the well-known Hofmeister series.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.91.012114 | DOI Listing |
Heliyon
January 2025
Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e.
View Article and Find Full Text PDFEnviron Res
January 2025
Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil. Electronic address:
Over the past years, global pesticide use has increased by 20%. New insecticidal molecules, like cyantraniliprole, aim to reduce side effects due to the high toxicity of pesticides and their harmful effects on health and the environment. Its mechanism involves binding to ryanodine receptors, causing rapid calcium ion release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!