This study reports the results of ab initio and density functional theory (DFT) electronic structure calculations as well as (3)J(HH) experimental and calculated coupling constant data obtained in the investigation of the conformational equilibrium of 3-halo-derivatives of 1-methylpyrrolidin-2-one. The five-membered ring assumes an envelope conformation owing to the plane of formation of the O═C-N-R bond, with C4 forming the "envelope lid". When the conformation changes, the "lid" alternates between positions above and below the amide plane. The α-carbonyl halogen assumes two positions: a pseudo-axial and a pseudo-equatorial. In the gaseous phase, the calculations indicate that the pseudo-axial conformer is more stable and preferable going down the halogen family. Natural bond orbital analysis showed that electronic delocalization is significant only for the iodo derivative. In the other derivatives, the electrostatic repulsion between oxygen and the halogen determines the conformational equilibrium. When the solvated molecule was taken into account, the pseudo-equatorial conformer population increased with the relative permittivity of the solvent. This variation was strong in the fluoro derivative, and the preference was inverted. In the chlorine derivative, the two populations became closer in methanol and acetonitrile. In the bromine and iodine derivatives, the percentage of pseudo-equatorial conformer increased only slightly owing to the dipole moment of the conformation: the pseudo-equatorial conformation has a greater dipole moment and thus is stable in media with high relative permittivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp512378g | DOI Listing |
Heliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFNat Commun
January 2025
IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Laboratory of Physicochemical Methods of Analysis, 69 Prospekt Oktyabrya, Ufa 450054, Russian Federation.
The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1,3)-dione was studied for the first time in aqueous solutions. Its constant (pK = 9.23 ± 0.
View Article and Find Full Text PDFPaxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!