The sex determination for zebrafish is controlled by a combination of genetic and environmental factors. The determination of sex in zebrafish has been suggested to rely on a mechanism that is affected by germ cell-derived signals. To begin our current study, a simplified and efficient germ cell-specific promoter of the dead end (dnd) gene was identified. Utilizing the metrodinazole (MTZ)/ bacterial nitroreductase (NTR) system for inducible germ cell ablation, several stable Tg (dnd:NTR-EGFP(-3'UTR)) and Tg (dnd:NTR-EGFP(+3'UTR)) zebrafish lines were then generated with the identified promoter. A thorough comparison of the expression patterns and tissue distributions of endogenous dnd and ntr-egfp transcripts in vivo revealed that the identified 2032-bp zebrafish dnd promoter can recapitulate dnd expression faithfully in stable transgenic zebrafish. The correlation between the levels of the germ cell-derived signals and requirement for maintaining the female fate has been also explored with different durations of the MTZ treatments. Our results revealed the decreasing ratios of female presented in the treated transgenic group are fairly associated with the reducing levels of the early germ cell-derived signals. After the juvenile transgenic fish treated with 5 mM MTZ for 20 days, all MTZ-treated transgenic fish exclusively developed into males with subfertilities. Taken together, our results identified here a simplified and efficient dnd promoter, and provide clear evidence indicating that it was not the presence but the sufficiency of signals derived from germ cells that is essential for female sex development in zebrafish. Our model also provides a unique system for sex control in zebrafish studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332673 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117824 | PLOS |
Stem Cell Res Ther
December 2024
Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
Ovarian organoids are essential in female reproductive medicine, enhancing our understanding of ovarian diseases and improving treatments, which benefits women's health. Constructing ovarian organoids involves two main processes: differentiating induced pluripotent stem cells (iPSCs) into germ and ovarian somatic cells to restore ovarian function and using extracellular matrix (ECM) to create a suitable ovarian microenvironment and scaffold. Although the technology is still in its early stages, future advancements will likely involve integrating high-throughput analysis, 3D-printed scaffolds, and efficient iPSC induction, driving progress in reproductive and regenerative medicine.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Department of Cell Biology, Jinan University, Guangzhou 510632, China.
As delayed parenthood becomes more prevalent, understanding age-related testosterone decline and its impact on male fertility has gained importance. However, molecular mechanisms concerning testicular aging remain largely undiscovered. Our study highlights that miR-143-3p, present in aging Sertoli cells (SCs), is loaded into extracellular vesicles (EVs), affecting Leydig cells (LCs) and germ cells, thus disrupting testicular tissue homeostasis and spermatogenesis.
View Article and Find Full Text PDFIn recent years, germline mutations in the microRNA (miRNA) processor genes DICER1 and DGCR8 have been coupled to the development of thyroid follicular nodular disease (TFND), thereby casting new light on the etiology of this enigmatic, benign condition in non-iodine-deficient regions. Moreover, DICER1 and DGCR8 mutations have also been reported in rare subsets of follicular cell-derived thyroid carcinomas. Specifically, truncating germline or missense somatic DICER1 mutations have been reported in small subsets of pediatric and adolescent follicular thyroid carcinoma (FTC) and poorly differentiated thyroid carcinoma (PDTC).
View Article and Find Full Text PDFUltrastruct Pathol
November 2024
Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
J Transl Med
October 2024
Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
Background: Recent studies have highlighted the importance of the cell-free DNA (cfDNA) methylation profile in detecting breast cancer (BC) and its different subtypes. We investigated whether plasma cfDNA methylation, using cell-free Methylated DNA Immunoprecipitation and High-Throughput Sequencing (cfMeDIP-seq), may be informative in characterizing breast cancer in patients with BRCA1/2 germline mutations for early cancer detection and response to therapy.
Methods: We enrolled 23 BC patients with germline mutation of BRCA1 and BRCA2 genes, 19 healthy controls without BRCA1/2 mutation, and two healthy individuals who carried BRCA1/2 mutations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!