The use of beta-blockers to enhance performance in some sports is forbidden. Based on this regulation, there is a demand for dynamic analytical procedures for analyzing these compounds quickly and without manual sample preparation. Therefore, the use of a molecularly imprinted polymer (MIP) in a multidimensional liquid chromatographic system coupled to a mass spectrometer provides a good alternative for improving the selectivity and practicality of the beta-blocker analyses, as described in this paper. A water-compatible MIP for oxprenolol was synthesized by the precipitation method, using methacrylic acid as a functional monomer and 2-hydroxyethyl methacrylate and glycerol dimethacrylate as hydrophilic monomers. A column filled with MIP was coupled to an LC-MS/MS instrument under the multidimensional configuration, with 10.0 mmol L(-1) ammonium formate buffer (pH 5.0) as the loading and reconditioning mobile phase and a 0.01% formic acid aqueous solution-methanol (30 : 70 v : v) as the elution mobile phase. The system was used for on-line extraction and quantization of oxprenolol (from 1.0 to 75.0 μg L(-1)), atenolol, propranolol, nadolol, pindolol, labetalol and metoprolol (all from 3.0 to 50 μg L(-1)) simultaneously, from urine samples. The correlation coefficient was higher than 0.99 for all the analytes. Suitable precision and accuracy were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an02066aDOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
8
mobile phase
8
μg l-1
8
direct doping
4
doping analysis
4
analysis beta-blocker
4
beta-blocker drugs
4
drugs urinary
4
urinary samples
4
samples on-line
4

Similar Publications

Constructing coral reef-like imprinted structure on molecularly imprinted nanocomposite membranes based on nanospheres with hydrophilic multicores for selective separation of acteoside.

J Chromatogr A

December 2024

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China. Electronic address:

Molecularly imprinted nanocomposite membranes (MINMs) have shown great superiority in selective separation of acteoside (ACT) from phenylethanoid glycosides in Cistanche tubulosa. Herein, ACT-based MINMs (A-MINMs) with coral reef-like imprinted structure were proposed and developed for specifically separating ACT molecules. The nanospheres with hydrophilic multicores (NHMs) were introduced into polyvinylidene fluoride (PVDF) powders to obtain NHMs@PVDF membranes by a phase inversion method.

View Article and Find Full Text PDF

The specific extraction of glabridin from licorice residues using molecular imprinting technique.

Food Chem

December 2024

School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China. Electronic address:

The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin.

View Article and Find Full Text PDF

Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

Formation of molecularly imprinted polymers: Strategies applied for the removal of protein template (review).

Adv Colloid Interface Sci

December 2024

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania. Electronic address:

The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template.

View Article and Find Full Text PDF

For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!