Atrazine and glyphosate are two of the most common pesticides used in the US Midwest that impact water quality via runoff, and the common snapping turtle (Chelydra serpentina) is an excellent indicator species to monitor these pesticides especially in lotic systems. The goals of this study were to (1) quantify atrazine, the atrazine metabolite diaminochlorotriazine (DACT), and glyphosate burdens in common snapping turtle tissue from individuals collected within the Embarras River in Illinois; (2) quantify atrazine, DACT, and glyphosate loads in water from the aquatic habitats in which common snapping turtles reside; and (3) investigate tissue loads based on turtle morphology and habitat choice. Concentrations of atrazine, DACT, and glyphosate in tissue did not show any relationship with lake habitat, carapace length, width, or mass. Both atrazine and glyphosate tissue samples varied as a function of site (river vs. lake), but DACT did not. Atrazine and glyphosate concentrations in water samples showed a linear effect on distance from the reservoir spillway and a deviation from linearity. Water column concentrations of all three contaminants varied across capture sites, but atrazine water concentration did not influence DACT water concentration nor did it exhibit a site interaction. Water atrazine and glyphosate concentrations were greater than tissue concentrations, whereas DACT water and tissue concentrations did not differ. This study showed that turtles are useful in long-term pesticide monitoring, and because DACT as a metabolite is less sensitive to variation, it should be considered as a preferred biomarker for pesticide runoff.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-015-4336-6DOI Listing

Publication Analysis

Top Keywords

atrazine glyphosate
20
common snapping
16
snapping turtle
12
dact glyphosate
12
atrazine
10
water
8
quantify atrazine
8
atrazine dact
8
glyphosate tissue
8
glyphosate concentrations
8

Similar Publications

Morphological and cellular effects in Boana faber tadpoles (Anura: Hylidae) exposed to atrazine-based herbicide and glyphosate-based herbicide and their mixtures.

Environ Sci Pollut Res Int

December 2024

Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.

Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.

View Article and Find Full Text PDF

Synthetic pesticides are known for their toxic effects on non-target aquatic organisms. However, little is known about their effects when present in mixtures, which are closer to realistic exposure scenarios. Therefore, this study evaluates the toxicity of pesticides such as diuron, atrazine and glyphosate, individually and in combination, in zebrafish embryos, investigating their mechanisms of oxidative stress.

View Article and Find Full Text PDF

Individual and combined effects of commercial glyphosate, atrazine and 2,4-D herbicides on the gerbil ventral prostate.

Chemosphere

November 2024

Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil. Electronic address:

Exposure to pesticides, individually or in a mixture, in drinking water is one of the main sources of human contamination, which causes adverse effects on the reproductive system. Our study aimed to investigate, the effects of a 90-day exposure to low concentrations of glyphosate (GLY), atrazine (ATZ), and 2,4-dichlorophenoxyacetic acid (2,4-D), in commercial formulations, on morphological, molecular, and hormonal parameters of the ventral prostate of gerbils (Meriones unguiculatus). The animals were exposed via drinking water to individual concentrations of GLY: 700 μg/L, ATZ: 3 μg/L, and 2,4-D: 70 μg/L, as well as to their mixture (MIX).

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how various herbicides (atrazine, glyphosate, and acetochlor) affect the growth and health of a specific algae species (MASCC-0035) over a 96-hour exposure period.
  • Results showed that higher concentrations of herbicides led to a significant decrease in cell numbers and chlorophyll content, with glyphosate being the most damaging.
  • Additionally, herbicide exposure disrupted the algae's antioxidant system and lipid metabolism, indicating stress responses that could have broader ecological impacts, highlighting the importance of continued research in this area.
View Article and Find Full Text PDF

Chemical desiccation is widely used in agriculture to anticipate harvest and mitigate the effects of adverse environmental conditions. It is applied to both grains and seeds. Although this practice is widely used, there are still significant gaps in understanding the effects of different herbicide application times on seed quality and plant physiological responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!