Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts.

J Colloid Interface Sci

Max-Planck-Institut für Eisenforschung GmbH, Department for Interface Chemistry and Surface Engineering, D-40237 Düsseldorf, Germany. Electronic address:

Published: May 2015

By virtue of its importance for self-organization of biological matter the hydrophobic force law and the range of hydrophobic interactions (HI) have been debated extensively over the last 40 years. Here, we directly measure and quantify the hydrophobic force-distance law over large temperature and concentration ranges. In particular, we study the HI between molecularly smooth hydrophobic self-assembled monolayers, and similarly modified gold-coated AFM tips (radii∼8-50 nm). We present quantitative and direct evidence that the hydrophobic force is both long-ranged and exponential down to distances of about 1-2 nm. Therefore, we introduce a self-consistent radius-normalization for atomic force microscopy data. This approach allows quantitative data fitting of AFM-based experimental data to the recently proposed Hydra-model. With a statistical significance of r(2)⩾0.96 our fitting and data directly reveal an exponential HI decay length of 7.2±1.2 Å that is independent of the salt concentration up to 750 mM. As such, electrostatic screening does not have a significant influence on the HI in electrolyte concentrations ranging from 1 mM to 750 mM. In 1 M solutions the observed instability during approach shifts to longer distances, indicating ion correlation/adsorption effects at high salt concentrations. With increasing temperature the magnitude of HI decreases monotonically, while the range increases slightly. We compare our results to the large body of available literature, and shed new light into range and magnitude of hydrophobic interactions at very close distances and over wide temperature and concentration regimes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2015.01.032DOI Listing

Publication Analysis

Top Keywords

hydrophobic force
12
force law
8
hydrophobic interactions
8
temperature concentration
8
hydrophobic
7
direct quantitative
4
quantitative afm
4
afm measurements
4
concentration
4
measurements concentration
4

Similar Publications

Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.

View Article and Find Full Text PDF

New insights into the interactions between the antibiotic enrofloxacin and fish protein by spectroscopic, thermodynamic, and theoretical simulation approaches.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.

In this study, myofibrillar proteins (MPs) from crucian carp were utilized as a model to investigate the binding mechanism between fish proteins and antibiotic residues. Fluorescence quenching confirmed the static quenching (K = 1.89 × 10 M s, K = 1.

View Article and Find Full Text PDF

Nanoscale insight into the interaction mechanism underlying the transport of microplastics by bubbles in aqueous environment.

J Colloid Interface Sci

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China. Electronic address:

The ecological risk of microplastics (MPs) is raising concern about their transport and fate in aquatic ecosystems. The capture of MPs by bubbles is a ubiquitous natural phenomenon in water-based environment, which plays a critical role in the global cycling of MPs, thereby increasing their environmental threats. However, the nanoscale interaction mechanisms between bubbles and MPs underlying MPs transport by bubbles in complex environmental systems remain elusive.

View Article and Find Full Text PDF

A new aguanidine-based bis Schiff base for highly selective Al recognition, BSA binding studies and theoretical calculations.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:

Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.

View Article and Find Full Text PDF

Identification and mechanistic study of piceatannol as a natural xanthine oxidase inhibitor.

Int J Biol Macromol

December 2024

Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China. Electronic address:

Natural Xanthine oxidase (XOD) inhibitors represent promising therapeutic agents for hyperuricemia (HUA) treatment due to their potent efficacy and favorable safety profiles. This study involved the construction of a comprehensive database of 315 XOD inhibitors and development of 28 machine learning-based QSAR models. The ChemoPy light gradient boosting machine model exhibited the best performance (AUC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!