Continuously tunable electronic structure of transition metal dichalcogenides superlattices.

Sci Rep

1] Department of Physics, Renmin University of China, Beijing 100872, China [2] Beijing Key Laboratory of Optoelectronic Functional Materials &Micro-nano Devices, Renmin University of China, Beijing 100872, China.

Published: February 2015

Two dimensional transition metal dichalcogenides have very exciting properties for optoelectronic applications. In this work we theoretically investigate and predict that superlattices comprised of MoS2 and WSe2 multilayers possess continuously tunable electronic structure with direct bandgaps. The tunability is controlled by the thickness ratio of MoS2 versus WSe2 of the superlattice. When this ratio goes from 1:2 to 5:1, the dominant K-K direct bandgap is continuously tuned from 0.14 eV to 0.5 eV. The gap stays direct against -0.6% to 2% in-layer strain and up to -4.3% normal-layer compressive strain. The valance and conduction bands are spatially separated. These robust properties suggest that MoS2 and WSe2 multilayer superlattice should be a promising material for infrared optoelectronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326700PMC
http://dx.doi.org/10.1038/srep08356DOI Listing

Publication Analysis

Top Keywords

continuously tunable
8
tunable electronic
8
electronic structure
8
transition metal
8
metal dichalcogenides
8
mos2 wse2
8
structure transition
4
dichalcogenides superlattices
4
superlattices dimensional
4
dimensional transition
4

Similar Publications

Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array.

Light Sci Appl

January 2025

State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.

View Article and Find Full Text PDF

Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.

View Article and Find Full Text PDF

Emerging biosensing platforms based on metal-organic frameworks (MOFs) for detection of exosomes as diagnostic cancer biomarkers: case study for the role of the MOFs.

J Mater Chem B

January 2025

Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.

Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.

View Article and Find Full Text PDF

Hemostasis Strategies and Recent Advances in Hydrogels for Managing Uncontrolled Hemorrhage.

ACS Appl Bio Mater

January 2025

Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China.

Hemorrhage continues to pose a significant challenge in various medical contexts, underscoring the need for advanced hemostatic materials. Hemostatic hydrogels have gained recognition as innovative tools for addressing uncontrollable bleeding, attributed to their distinctive features including biological compatibility, tunable mechanical properties, and exceptional hemostatic performance. This review provides a comprehensive overview of hemostatic hydrogels that offer rapid and effective bleeding control.

View Article and Find Full Text PDF

Diblock copolyelectrolytes have significant potential in applications such as solid-state single-ion conductors, but precisely controlling their nanostructures for efficient ion transport remains a challenge. In this study, we explore the phase behavior and microphase transitions of AX BY-type diblock copolyelectrolytes under alternating electric fields using coarse-grained molecular dynamics simulations. We systematically investigate the effects of various electric field features, including unipolar and bipolar square-waves, as well as offset and non-offset sine-waves, focusing on how field strength and period influence the self-assembling morphology of the copolyelectrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!