Nociceptin (orphanin FQ) is a 17-residue neuropeptide hormone with roles in both nociception and analgesia. It is an opioid-like peptide that binds to and activates the G-protein-coupled receptor opioid receptor-like-1 (ORL-1, NOP, orphanin FQ receptor, kappa-type 3 opioid receptor) on central and peripheral nervous tissue, without activating classic delta-, kappa-, or mu-opioid receptors or being inhibited by the classic opioid antagonist naloxone. The three-dimensional structure of ORL-1 was recently published, and the activation mechanism is believed to involve capture by ORL-1 of the high-affinity binding, prohelical C-terminus. This likely anchors the receptor-activating N-terminus of nociception nearby for insertion in the membrane-spanning helices of ORL-1. In search of higher agonist potency, two lysine and two aspartate residues were strategically incorporated into the receptor-binding C-terminus of the nociceptin sequence and two Lys(i)→Asp(i+4) side chain-side chain condensations were used to generate lactam cross-links that constrained nociceptin into a highly stable α-helix in water. A cell-based assay was developed using natively expressed ORL-1 receptors on mouse neuroblastoma cells to measure phosphorylated ERK as a reporter of agonist-induced receptor activation and intracellular signaling. Agonist activity was increased up to 20-fold over native nociceptin using a combination of this helix-inducing strategy and other amino acid modifications. An NMR-derived three-dimensional solution structure is described for a potent ORL-1 agonist derived from nociceptin, along with structure-activity relationships leading to the most potent known α-helical ORL-1 agonist (EC₅₀ 40 pM, pERK, Neuro-2a cells) and antagonist (IC₅₀ 7 nM, pERK, Neuro-2a cells). These α-helix-constrained mimetics of nociceptin(1-17) had enhanced serum stability relative to unconstrained peptide analogues and nociceptin itself, were not cytotoxic, and displayed potent thermal analgesic and antianalgesic properties in rats (ED₅₀ 70 pmol, IC₅₀ 10 nmol, s.c.), suggesting promising uses in vivo for the treatment of pain and other ORL-1-mediated responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.vh.2014.10.001 | DOI Listing |
Biomedicines
June 2024
Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
A complication of diabetes is neuropathic pain, which is difficult to control with medication. We have confirmed that neuropathic pain due to mechanical allodynia in diabetic mice is mediated by a characteristic neuropeptide in the spinal cord. We evaluated the strength of mechanical allodynia in mice using von Frey filaments.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68020, Mexico.
LOX-1, ORL-1, or lectin-like oxidized low-density lipoprotein receptor 1 is a transmembrane glycoprotein that binds and internalizes ox-LDL in foam cells. LOX-1 is the main receptor for oxidized low-density lipoproteins (ox-LDL). The LDL comes from food intake and circulates through the bloodstream.
View Article and Find Full Text PDFPigment Cell Melanoma Res
May 2024
Orlucent Inc, Los Gatos, California, USA.
A novel approach to melanoma diagnosis-in vivo molecular skin fluorescence imaging (mSFI)-was developed to identify premalignant changes in the form of tissue remodeling related to melanoma development in humans by imaging the proximal microenvironment of lesions. The method was tested using a fluorescent peptide (ORL-1) which binds to αvβ3 integrin, a molecule associated with invasive melanoma development. A cut off score of 7 was established, differentiating melanomas from nonmelanoma nevi with 100% sensitivity, and 95.
View Article and Find Full Text PDFPeptides
November 2023
Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA. Electronic address:
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
View Article and Find Full Text PDFMol Brain
November 2022
Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
Activation of nociceptin opioid peptide receptors (NOP, a.k.a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!