Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway.

Prostaglandins Other Lipid Mediat

New York Medical College, Valhalla, NY, United States; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, United States. Electronic address:

Published: December 2015

Myocardial infarction (MI) is complicated by ventricular fibrosis and associated diastolic and systolic failure. Emerging studies implicate Wnt1 signaling in the formation of new blood vessels. Epoxyeicosatrienoic acids (EETs)-mediated up-regulation of heme oxygenase-1 (HO-1) protects against the detrimental consequences of MI in several animal models, however, the mechanism(s) by which this occurs remains unclear. The aim of this study was to examine these mechanisms in the LAD ligation animal model of post infarcted heart failure. Specifically, we sought to clarify the mechanistic basis of the interactions of the Wnt1 canonical pathway, HO-1 and associated angiogenesis. Human microvascular endothelial cells (HMECs) were exposed to anoxia and treated with the EET agonist, NUDSA, in the presence and absence of tin mesoporphyrin (SnMP). Increased capillary density, and Wnt1 and HO-1 expression occurred in cells treated with NUDSA. Anoxic HMECs treated with NUDSA and Wnt1 siRNA, exhibited decreased in the expression of β-catenin and the Wnt1 target gene, PPARδ (p<0.05 vs. NUDSA). Furthermore, blocking the Wnt 1 antagonist, Dickkopf 1, by siRNA increased β-catenin and PPARδ expression, and this effect was further enhanced by the concurrent administration of NUDSA. In in vivo experiments, C57B16 mice were divided into 4 groups: sham, mice with MI via LAD ligation and mice with MI treated with NUDSA, with and without SnMP. Increased fractional area change (FAC) and myocardial angiogenesis were observed in mice treated with NUDSA (p<0.05 vs. MI). Increased expression of HO-1, Wnt1, β-catenin, adiponectin, and phospho-endothelial nitric oxide synthetase (p-eNOS), and a decrease in the glycosylated subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, gp91(phox) expression occurred in cardiac tissue of mice treated with NUDSA (p<0.05 vs. MI). SnMP reversed these effects. This novel study demonstrates that increasing the canonical Wnt1 signaling cascade with the subsequent increase in HO-1, adiponectin and angiogenesis ameliorates fibrosis and cardiac dysfunction in a mouse model of MI and supports the hypothesis that HO-1 is an integral component of the EETs-adiponectin axis and is central for the control of resistance to fibrosis and vascular dysfunction and in part determine how they influence the cellular/vascular homeostasis and provides insight into the mechanisms involved in vascular dysfunction as well as potential targets for the treatment of CVD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553685PMC
http://dx.doi.org/10.1016/j.prostaglandins.2015.01.002DOI Listing

Publication Analysis

Top Keywords

epoxyeicosatrienoic acids
8
wnt1 canonical
8
canonical pathway
8
treated nudsa
8
wnt1
6
agonists epoxyeicosatrienoic
4
acids reduce
4
reduce infarct
4
infarct size
4
size ameliorate
4

Similar Publications

Severity-Dependent Long-Term Post-Traumatic Changes in the Circulating Oxylipin Profile.

Int J Mol Sci

December 2024

Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany.

Trauma causes the breakdown of membrane phospholipids and the subsequent degradation of the released polyunsaturated fatty acids (PUFAs) to partially bioactive oxylipins. Here, we screened for circulating PUFAs and oxylipins in patients (n = 34) differing from those of uninjured controls (n = 25) and analyzed their diagnostic potential. Patients were followed up for 1 to 240 h after minor/moderate, severe, and very severe injuries.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with epoxide hydrolase activity in the C-terminal domain (C-EH) and lipid phosphate phosphatase activity in the N-terminal domain (N-phos). The C-EH hydrolyzes bioactive epoxy fatty acids such as epoxyeicosatrienoic acid (EET). The N-phos hydrolyzes lipid phosphomonesters, including the signaling molecules of lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

Inhibiting microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E (PGE) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC values in the low micromolar range.

View Article and Find Full Text PDF

Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) into biologically active epoxyeicosatrienoic acids (EETs), forming a pivotal metabolic pathway (AA-CYP-EETs-soluble epoxide hydrolase-dihydroxyeicosatrienoic acids) implicated in the progression of various disorders. Inflammation is a key contributor to the onset and progression of numerous systemic diseases, and EETs play a significant role in mitigating inflammation. Extensive research highlights the cardiovascular protective effects of EETs, which include vasodilation, anti-hypertensive, and anti-atherosclerotic properties.

View Article and Find Full Text PDF

Aerobic exercise alleviates statin-induced PCSK9 upregulation by increasing epoxyeicosatrienoic acid levels through the FoxO3a-Sirt6 axis.

J Sport Health Sci

November 2024

Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410011, China. Electronic address:

Background: Statins are the cornerstone of low-density lipoprotein cholesterol (LDL-C)-lowering therapy; however, the therapeutic efficacy of statins in countering atherosclerotic cardiovascular disease (ASCVD) is compromised by the concurrent elevation of proprotein convertase subtilisin/kexin type 9 (PCSK9), a pivotal molecule that increases LDL-C levels. Aerobic exercise lowers PCSK9 levels, but the underlying mechanism remains unclear. Therefore, we investigated how aerobic exercise can ameliorate statin-induced increases in PCSK9 levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!