It has been well established that oxidative stress and inflammation are involved in the pathogenesis of diabetic nephropathy. It has been shown that tropisetron exerts anti-inflammatory and immunomodulatory properties. The current study was designed to investigate protective effects of tropisetron on early diabetic nephropathy in streptozotocin-induced diabetic rats. Rats were divided into six groups: (i) untreated diabetic (streptozotocin group); (ii) untreated control; (iii) diabetic rats treated with tropisetron (3 mg/kg); (iv) normal rats treated with tropisetron (3 mg/kg); (v) diabetic rats treated with granisetron (3 mg/kg); and (vi) normal rats treated with granisetron (3 mg/kg); rats began receiving treatment at the time of diabetes induction for 2 weeks. At the termination of the experiments, bodyweight, kidney index, urinary albumin excretion, and glomerular filtration rate were measured. The levels of oxidative stress markers and tumour necrosis factor-α were also determined. Streptozotocin-treated animals showed significant loss of bodyweight and renal enlargement and dysfunction. Diabetic rats also exhibited an increase in malondialdehyde along with a significant decrease in glutathione, superoxide dismutase activity, and catalase activity. Furthermore, the diabetic animals demonstrated a significant rise in renal cortical, urinary tumour necrosis factor-α, and urinary albumin excretion. Both granisetron and tropisetron decreased blood glucose in diabetic animals, but this decrease was not significant for granisetron. Treatment with tropisetron, but not granisetron, prevented increases in oxidative stress and tumour necrosis factor-α, decreased urinary cytokine excretion and albuminuria, and improved renal morphological damage. In conclusion, the present study suggests that tropisetron may be a protective agent in early diabetic nephropathy, and its action is mediated, at least in part, by anti-oxidative and anti-inflammatory mechanisms that appear to be independent of the 5-HT3 receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1440-1681.12373 | DOI Listing |
Cells
January 2025
Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.
View Article and Find Full Text PDFSex Med
December 2024
Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
Background: Diabetic erectile dysfunction (DMED) has a high incidence and is poorly treated.
Aim: This study investigates fibrosis's genetic profiling and explores potential mechanisms for DMED.
Methods: The DMED model was constructed in rats using streptozotocin.
Hum Cell
January 2025
Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China. Electronic address:
Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!