Amorphous silicon: new insights into an old material.

Chemistry

Institut für Anorganische Chemie, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany), Fax: (+49) 69-798-29188.

Published: March 2015

Amorphous silicon is synthesized by treating the tetrahalosilanes SiX4 (X=Cl, F) with molten sodium in high boiling polar and non-polar solvents such as diglyme or nonane to give a brown or a black solid showing different reactivities towards suitable reagents. With regards to their technical relevance, their stability towards oxygen, air, moisture, chlorine-containing reaction partners RCl (R=H, Cl, Me) and alcohols is investigated. In particular, reactions with methanol are a versatile tool to deliver important products. Besides tetramethoxysilane formation, methanolysis of silicon releases hydrogen gas under ambient conditions and is thus suitable for a decentralized hydrogen production; competitive insertion into the MeO-H versus the Me-OH bond either yields H- and/or methyl-substituted methoxy functional silanes. Moreover, compounds, such as Men Si(OMe)4-n (n=0-3) are simply accessible in more than 75 % yield from thermolysis of, for example, tetramethoxysilane over molten sodium. Based on our systematic investigations we identified reaction conditions to produce the methoxysilanes Men Si(OMe)4-n in excellent (n=0:100 %) to acceptable yields (n=1:51 %; n=2:27 %); the yield of HSi(OMe)3 is about 85 %. Thus, the methoxysilanes formed might possibly open the door for future routes to silicon-based products.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201404966DOI Listing

Publication Analysis

Top Keywords

amorphous silicon
8
molten sodium
8
men siome4-n
8
silicon insights
4
insights material
4
material amorphous
4
silicon synthesized
4
synthesized treating
4
treating tetrahalosilanes
4
tetrahalosilanes six4
4

Similar Publications

Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.

View Article and Find Full Text PDF

A novel directly compressible co-processed excipient, based-on rice starch for extended-release of tablets.

Eur J Pharm Biopharm

January 2025

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

The development of a direct compression excipient with extended-release property is crucial for improving tablet manufacturing and drug delivery. This research focuses on developing a novel co-processed excipient composed of rice starch (RS), methylcellulose (MC), and colloidal silicon dioxide (CSD) using a wet granulation technique. The ratios of RS: MC (1.

View Article and Find Full Text PDF

A rear emitter with a p-type boron-doped hydrogenated amorphous silicon/nanocrystalline silicon [a-Si:H(p)/nc-Si:H(p)] stack was prepared for the silicon heterojunction (SHJ) solar cell to improve its short-circuit current density (). CO plasma treatment (CO PT) was applied to a-Si:H(p) to facilitate the crystallization of the subsequently deposited nc-Si:H(p). To evaluate the effect of the CO PT, two different nc-Si:H(p) layers with low and high crystallinity (χ) were investigated.

View Article and Find Full Text PDF

Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!