Using RNA interference, we have selectively perturbed neurotransmitter-related features of the larval swimming behavior of Oikopleura dioica, a tunicate with a central nervous system comprising about 130 neurons. We injected dsRNA into fertilized eggs to knockdown the expression of the genes, respectively, encoding ChAT (choline acetyltransferase) and GAD (glutamic acid decarboxylase), enzymes critical for the biosynthesis of acetylcholine and GABA. These two neurotransmitters have conserved roles during evolution, particularly within chordate motor systems, where they mediate respectively neuromuscular and central inhibitory signals. In Oikopleura, interference with ChAT expression prevented the normal bidirectional, propagating tail movement characteristic of swimming, permitting only repeated unilateral tail bends. Proper swimming was never observed, and the resting period between episodes of activity was lengthened. This phenotype is most likely caused by the reduction of transcription observed for both the targeted ChAT gene and the VAChT gene (Vesicular Acetylcholine Transporter), both genes being transcribed from the same operon. Interference with GAD expression led to an uncoordinated version of swimming with a spiral movement trajectory, but with episodes similar in duration and cycle frequency to those of normal swimming. Our results suggest locomotor functions for ChAT and GABA that are more subtle than previously proposed for tunicates and opens the way for a genetic dissection of Oikopleura neuronal circuits, which are likely to be among the most simplified in the chordate phylum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.b.22607 | DOI Listing |
Environ Res
January 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Hygienic insecticides are applied directly to the living environment and are closely related to human life. Dimefluthrin (DIM) is one of the most widely used hygienic insecticides globally. However, with increasing mosquito resistance, both the concentration and duration of DIM usage have risen, prompting public concerns regarding its neurotoxic risks, especially for immunocompromised children.
View Article and Find Full Text PDFDev Biol
January 2025
Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan. Electronic address:
Animals must avoid adhesion to objects in the environment to maintain their mobility and independence. The marine invertebrate chordate ascidians are characterized by an acellular matrix tunic enveloping their entire body for protection and swimming. The tunic of ascidian larvae consists of a surface cuticle layer and inner matrix layer.
View Article and Find Full Text PDFZoological Lett
January 2025
National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.
In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children's Hospital, Boston, MA.
Dystrophin-deficient zebrafish larvae are a small, genetically tractable vertebrate model of Duchenne muscular dystrophy well suited for early stage therapeutic development. However, current approaches for evaluating their impaired mobility, a physiologically relevant therapeutic target, are characterized by low resolution and high variability. To address this, we used high speed videography and deep learning-based markerless motion capture to develop linked-segment models of larval escape response (ER) swimming.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.
Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!