Here we describe a relatively facile synthetic protocol for the formation of Si-Ge and Si-Ge-Si1-xGex axial nanowire heterostructures. The wires are grown directly on substrates with an evaporated catalytic layer placed in the vapour zone of a high boiling point solvent with the silicon and germanium precursors injected as liquids sequentially. We show that these heterostructures can be formed using either indium or tin as the catalyst seeds which form in situ during the thermal anneal. There is a direct correlation between growth time and segment length allowing good control over the wire composition. The formation of axial heterostructures of Si-Ge-Si1-xGex nanowires using a triple injection is further discussed with the alloyed Si1-xGex third component formed due to residual Ge precursor and its greater reactivity in comparison to silicon. It was found that the degree of tapering at each hetero-interface varied with both the catalyst type and composition of the NW. The report shows the versatility of the solvent vapour growth system for the formation of complex Si-Ge NW heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp04450a | DOI Listing |
Nanotechnology
December 2024
School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
ACS Nano
December 2024
Division of Synchrotron Radiation Research, Department of Physics, Lund University, 221 00 Lund, Sweden.
Metal-halide perovskites (MHPs) have gained substantial interest in the energy and optoelectronics field. MHPs in nanostructure forms, such as nanocrystals and nanowires (NWs), have further expanded the horizons for perovskite nanodevices in geometry and properties. A partial anion exchange within the nanostructure, creating axial heterojunctions, has significantly augmented the potential applications.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
Nano Lett
November 2024
Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching bei München, Germany.
Research (Wash D C)
October 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!