Synthesis of silicon-germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts.

Phys Chem Chem Phys

Materials and Surface Science Institute and Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.

Published: March 2015

Here we describe a relatively facile synthetic protocol for the formation of Si-Ge and Si-Ge-Si1-xGex axial nanowire heterostructures. The wires are grown directly on substrates with an evaporated catalytic layer placed in the vapour zone of a high boiling point solvent with the silicon and germanium precursors injected as liquids sequentially. We show that these heterostructures can be formed using either indium or tin as the catalyst seeds which form in situ during the thermal anneal. There is a direct correlation between growth time and segment length allowing good control over the wire composition. The formation of axial heterostructures of Si-Ge-Si1-xGex nanowires using a triple injection is further discussed with the alloyed Si1-xGex third component formed due to residual Ge precursor and its greater reactivity in comparison to silicon. It was found that the degree of tapering at each hetero-interface varied with both the catalyst type and composition of the NW. The report shows the versatility of the solvent vapour growth system for the formation of complex Si-Ge NW heterostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp04450aDOI Listing

Publication Analysis

Top Keywords

axial nanowire
8
nanowire heterostructures
8
growth system
8
indium tin
8
heterostructures
5
synthesis silicon-germanium
4
silicon-germanium axial
4
heterostructures solvent
4
solvent vapor
4
vapor growth
4

Similar Publications

Article Synopsis
  • * Researchers mapped the three-dimensional strain field and identified how indium content in the shell impacts the strain distribution and plastic relaxation processes.
  • * The study found that although axial strains are uniform, radial and tangential strain gradients occur due to strain concentration at interfaces, affecting the growth strategies for these nanowires.
View Article and Find Full Text PDF

Metal-halide perovskites (MHPs) have gained substantial interest in the energy and optoelectronics field. MHPs in nanostructure forms, such as nanocrystals and nanowires (NWs), have further expanded the horizons for perovskite nanodevices in geometry and properties. A partial anion exchange within the nanostructure, creating axial heterojunctions, has significantly augmented the potential applications.

View Article and Find Full Text PDF

Recent Advances in the Growth and Compositional Modelling of III-V Nanowire Heterostructures.

Nanomaterials (Basel)

November 2024

Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.

Article Synopsis
  • - Nanowire heterostructures enhance the integration of III-V photonics with silicon electronics, allowing for precise bandgap engineering and improved optical properties.
  • - Recent advancements in modeling these structures focus on deterministic approaches based on classical nucleation and growth theories, helping to understand the formation mechanisms and interfacial profiles.
  • - A variety of models exist for predicting heterostructure behavior, each with unique parameters and limitations, and there is a need for further research to refine these methods and enhance their applicability to experimental data.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on predicting the optical properties of large arrays of luminescent nanowires, which is crucial for developing integrated photonic devices, but it's complicated by varying geometries and individual differences of the nanowires.!* -
  • Researchers conducted high-throughput spectroscopy on 16,800 InGaAs quantum heterostructures to evaluate luminescence efficiency and emission energy trends, finding that larger pre-patterned diameters improve uniformity.!* -
  • Anomalies in emission energy linked to rotational twinning in the InGaAs area were noted, leading to significant shifts in energy due to quantum confinement effects, helping optimize the relationship between geometry and optical properties in quantum nanowires.!*
View Article and Find Full Text PDF
Article Synopsis
  • - This study focuses on creating a high-performance aerogel adsorbent made from polyimide, hydroxyapatite nanowires, and reduced graphene oxide, aimed at improving the removal of high-viscosity organic liquids during oil spills.
  • - The aerogel features specially designed anisotropic structures that have channels to reduce flow tortuosity, resulting in superior adsorption efficiency for viscous oils, reaching an impressive coefficient of 0.37 kg m/s for engine oil.
  • - Additionally, the material's photothermal properties enhance its adsorption speed under sunlight, and its fire resistance allows for multiple reuse cycles, making it a promising solution for oil spill cleanup and a model for future adsorbent innovations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!