Bone regenerative efficacy of biphasic calcium phosphate collagen composite as a carrier of rhBMP-2.

Clin Oral Implants Res

Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Korea.

Published: November 2016

Objectives: This study compared the bone regenerative effects of a recombinant human bone morphogenetic protein 2 (rhBMP-2)-loaded collagen-based biphasic calcium phosphate composite (BCPC) and rhBMP-2-loaded biphasic calcium phosphate (BCP).

Material And Methods: The in vitro release profiles of rhBMP-2-loaded BCP and BCPC were measured. The animal surgery was performed on ten rabbits. Four 8-mm-diameter circular calvarial defects were made and filled with BCP, BCPC, rhBMP-2-loaded BCP (BMP + BCP) and rhBMP-2-loaded BCPC (BMP + BCPC). The animals were euthanized either 2 or 8 weeks after surgery.

Results: The initial burst release of rhBMP-2 was greater for BCP than for BCPC, and both presented a slow release pattern thereafter. In rabbit calvarial defects, the space maintaining capability and graft resorption of all experimental groups did not show statistical differences at 2 and 8 weeks. New bone formation in the rhBMP-2-loaded groups was greater than in the non-loaded groups at both weeks, but the amount of new bone was comparable between both rhBMP-2-loaded groups at both weeks. There was a distinct histologic difference between the BMP + BCP and BMP + BCPC groups at 2 weeks; the new bone formation occurred more in the intergranular spaces and the BCP-to-bone contact was greater in the BMP + BCPC group, but these differences were no longer discernible at 8 weeks.

Conclusions: BCP- and BCPC-loaded rhBMP-2 significantly improved bone regeneration and BCPC led to a dense network of new bone and bone particles during the early healing period. BCPC can therefore be considered as a promising candidate for carrying rhBMP-2.

Download full-text PDF

Source
http://dx.doi.org/10.1111/clr.12568DOI Listing

Publication Analysis

Top Keywords

biphasic calcium
12
calcium phosphate
12
bcp bcpc
12
bone
9
bone regenerative
8
bcpc rhbmp-2-loaded
8
rhbmp-2-loaded bcp
8
calvarial defects
8
bone formation
8
rhbmp-2-loaded groups
8

Similar Publications

Smart core-shell microneedles for psoriasis therapy: In situ self-assembly of calcium ion-coordinated dexamethasone hydrogel.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511443, China. Electronic address:

Psoriasis is a prevalent relapsing dermatological condition that often necessitates lifelong treatment. The distinctive thickening of the stratum corneum presents a challenge to drug penetration. The employment of microneedles has been demonstrated to enhance the transdermal drug delivery efficacy by creating multiple microchannels in the skin.

View Article and Find Full Text PDF

Background: Aneurysmal bone cysts (ABCs) are benign, blood-filled neoplasms causing bone destruction, often requiring resection. However, challenges arise, especially at the cranio-cervical junction, where proximity to critical structures limits removal. Non-surgical options include selective arterial embolization (SAE) as main treatment, while Denosumab and centrifugated bone marrow emerge as experimental alternatives.

View Article and Find Full Text PDF

Biphasic calcium phosphate (BCP) is a bioceramic widely used in hard tissue engineering for bone replacement. BCP consists of β-tricalcium phosphate (β-TCP) - a highly soluble and resorbable phase - and hydroxyapatite (HA) - a highly stable phase, creating a balance between solubility and resorption, optimally supporting cell interactions and tissue growth. The β-TCP/HA ratio significantly affects the resorption, solubility, and cellular response, with a higher β-TCP ratio increasing resorption due to its solubility.

View Article and Find Full Text PDF

Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.

View Article and Find Full Text PDF

Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!