The stereoselective reduction of suitably substituted C═C bonds mediated by enzymes, called ene reductases, has received great attention in the last decade. Some successful applications of this biocatalysed procedure to the synthesis of chiral active pharmaceutical ingredients have been reported in the literature. The generation of suitable models to be used for predicting the stereochemical outcome of this kind of reductions is a challenging task. In the last years we have exploited deuterium labelling to investigate the stereochemical course of the enzyme-mediated reductions of a wide collection of substrates belonging to well-defined chemical classes. The results of this research have allowed us to draw conclusions on the relationship between the structural characteristics of the substrate and the binding mode it adopts in the enzyme active site. The collected data can be exploited to create an empirical model to rationalise and predict the stereoselectivity of old yellow enzyme (OYE)-catalysed reductions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2015.1009909 | DOI Listing |
J Org Chem
September 2024
Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 263 Avenue du Général Leclerc, Campus de Beaulieu, F-35000 Rennes, France.
Allylboration reactions of ketones catalyzed by BINOL derivatives can exhibit highly variable stereochemical courses depending on the nature and reactivity of the ketone substrate. In this Article, we put into perspective the relationship between the nature of the starting material and the active species involved in the asymmetric allyboration catalyzed by BINOL derivatives. This work, aimed at comparing different plausible mechanisms by density functional theory (DFT) at the M06-2X/6-311+G(d,p) level involving different types of allylboronates in the presence of the organocatalyst, leads to the confirmation of the hitherto accepted hypothesis of a reaction promoted by the transient cyclic allyl-1,3,2-dioxaborolane derived from BINOLs in the case of unactivated or weakly activated ketones such as indanone.
View Article and Find Full Text PDFACS Catal
August 2024
Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
Palladium-catalyzed cross-couplings remain among the most robust methodologies to form carbon-carbon and carbon-heteroatom bonds. In particular, carbon-nitrogen (C-N) couplings (Buchwald-Hartwig aminations) find widespread use in fine chemicals industries. The use of base in these reactions is critical for catalyst activation and proton sequestration.
View Article and Find Full Text PDFJ Org Chem
August 2024
Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan.
In the last several years, atropisomers owing to the rotational restriction around a C-N single bond (C-N axially chiral compounds) have attracted significant attention in the field of synthetic organic chemistry. In particular, the highly enantioselective synthesis of various C-N axially chiral compounds and their application to asymmetric reactions have been reported by many groups. On the other hand, studies on the structural chemistry of C-N axially chiral compounds have attracted scant attention in comparison with synthetic studies.
View Article and Find Full Text PDFJ Pharm Biomed Anal
September 2024
University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, Tübingen 72076, Germany. Electronic address:
Oxylipins are important low abundant signaling molecules in living organisms. In platelets they play a primary role in platelet activation and aggregation in the course of thrombotic events. In vivo, they are enzymatically synthesized by cyclooxygenases, lipoxygenases, or cytochrome P450 isoenzmes, resulting in diverse polyunsaturated fatty acid (FA) metabolites including hydroxy-, epoxy-, oxo-FAs, and endoperoxides with pro-thrombotic or anti-thrombotic effects.
View Article and Find Full Text PDFPharmaceuticals (Basel)
May 2024
National Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
Mebendazole () is a benzimidazole carbamate anthelmintic used worldwide for the treatment and prevention of parasitic disorders in animals and humans. A large number of in vivo and in vitro studies have demonstrated that also has anticancer activity in multiple types of cancers. After oral administration, the phenylketone moiety of is rapidly reduced to the hydroxyl group to form the chiral hydroxy metabolite ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!