Composites of magnetite and two-line ferrihydrite with graphite oxide (GO) were synthesized and tested as hydrogen sulfide adsorbents. Exhausted and initial composites were characterized by the adsorption of nitrogen, X-ray diffraction, potentiometric titration, thermal analysis, and FTIR. The addition of GO increased the surface area of the composites due to the formation of new micropores. The extent of the increase depended on the nature of the iron (hydr)oxide and the content of GO. The addition of GO did not considerably change the crystal structure but increased the number of acidic functional groups. While for the magnetite composites an increase in the H2S adsorption capacity after GO addition was found, the opposite effect was recorded for the ferrihydrite composites. That increase in the adsorption capacity was linked to the affinity of the composites to adsorb water in mesopores of specific sizes in which the reaction with basic surface groups takes place. Elemental sulfur and ferric and ferrous sulfates were detected on the surface of the exhausted samples. A redox reactive adsorption mechanism is proposed to govern the retention of hydrogen sulfide on the surface of the composites. The incorporation of GO enhances the chemical retention of H2S due to the incorporation of OH reactive groups and an increase in surface heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la504563zDOI Listing

Publication Analysis

Top Keywords

reactive adsorption
8
composites
8
hydrogen sulfide
8
composites increase
8
adsorption capacity
8
adsorption
5
surface
5
role surface
4
surface chemistry
4
chemistry morphology
4

Similar Publications

Graphene Supported NiFe-LDH and PbO Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction.

Materials (Basel)

December 2024

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.

View Article and Find Full Text PDF

Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is insufficient for executing a nucleophilic reaction. Importantly, as a polyhydroxy biopolymer, cellulose has a high proportion of hydroxy groups in secondary and primary forms, providing it with limited aqueous solubility, highly dependent on its form, size, and other materialistic properties.

View Article and Find Full Text PDF

Designing cellulose based biochars for CO separation using molecular simulations.

Sci Rep

January 2025

Thermodynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

This study investigates the pyrolysis mechanism of cellulose using reactive molecular dynamics simulations to prepare biochars for CO separation applications. Six biochars with densities ranging from 0.160 to 0.

View Article and Find Full Text PDF

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

Some biomasses like cotton contain natural fibrous structures. This is a desirable structural feature for exposure of adsorption sites on cotton-derived activated carbon (AC). This was verified herein by conducting activation of cotton with ZnCl, HPO, KCO or KOH, probing whether structural transformation during activation could be confined inside a cotton fiber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!