Trophic cascades are indirect positive effects of predators on resources via control of intermediate consumers. Larger-bodied predators appear to induce stronger trophic cascades (a greater rebound of resource density toward carrying capacity), but how this happens is unknown because we lack a clear depiction of how the strength of trophic cascades is determined. Using consumer resource models, we first show that the strength of a trophic cascade has an upper limit set by the interaction strength between the basal trophic group and its consumer and that this limit is approached as the interaction strength between the consumer and its predator increases. We then express the strength of a trophic cascade explicitly in terms of predator body size and use two independent parameter sets to calculate how the strength of a trophic cascade depends on predator size. Both parameter sets predict a positive effect of predator size on the strength of a trophic cascade, driven mostly by the body size dependence of the interaction strength between the first two trophic levels. Our results support previous empirical findings and suggest that the loss of larger predators will have greater consequences on trophic control and biomass structure in food webs than the loss of smaller predators.

Download full-text PDF

Source
http://dx.doi.org/10.1086/679735DOI Listing

Publication Analysis

Top Keywords

strength trophic
24
trophic cascades
16
trophic cascade
16
body size
12
interaction strength
12
trophic
11
size dependence
8
strength
8
parameter sets
8
predator size
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!