Reciprocity is characterized by individuals actively making it beneficial for others to cooperate by responding to them. This makes it a particularly powerful generator of mutual interest, because the benefits accrued by an individual can be redistributed to another. However, reciprocity is a composite biological function, entailing at least two subfunctions: (i) a behavioral ability to provide fitness benefits to others and (ii) a cognitive ability to evaluate the benefits received from others. For reciprocity to evolve, these two subfunctions must appear together, which raises an evolutionary problem of bootstrapping. In this article, I develop mathematical models to study the necessary conditions for the gradual emergence of reciprocity in spite of this bootstrapping problem. I show that the evolution of reciprocity is based on three conditions. First, there must be some variability in behavior. Second, cooperation must pre-evolve for reasons independent of reciprocity. Third, and most significantly, selection favors conditional cooperation only if the cooperation expressed by others is already conditional, that is, if some reciprocity is already present in the first place. In the discussion, I show that these three conditions help explain the specific features of the instances in which reciprocity does occur in the wild. For instance, it accounts for the role of spatial symmetry (as in ungulate allogrooming), the importance of synergistic benefits (as in nuptial gifts), the facilitating role of collective actions (as in many instances of human cooperation), and the potential role of kinship (as in primate grooming).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/679625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!