An injectable thermogel with high radiopacity.

Chem Commun (Camb)

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Published: April 2015

An injectable PEG/polyester thermogel with strong X-ray opacity was designed and synthesized through the conjugation of 2,3,5-triiodobenzoic acid to the hydrophobic end of the mPEG-PLA diblock copolymer for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc00049aDOI Listing

Publication Analysis

Top Keywords

injectable thermogel
4
thermogel high
4
high radiopacity
4
radiopacity injectable
4
injectable peg/polyester
4
peg/polyester thermogel
4
thermogel strong
4
strong x-ray
4
x-ray opacity
4
opacity designed
4

Similar Publications

Cardiovascular diseases such as myocardial infarction or limb ischemia are characterized by regression of blood vessels. Local delivery of growth factors (GFs) involved in angiogenesis such as fibroblast blast growth factor-2 (FGF-2) has been shown to trigger collateral neovasculature and might lead to a therapeutic strategy. In vivo, heparin, a sulfated polysaccharide present in abundance in the extracellular matrix (ECM), has been shown to function as a local reservoir for FGF-2 by binding FGF-2 and other morphogens and it plays a role in the evolution of GF gradients.

View Article and Find Full Text PDF

Modular Synthetic Platform to Tailor Therapeutic-Specific Delivery in Injectable Hydrogels.

ACS Appl Mater Interfaces

December 2024

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.

Injectable thermoresponsive hydrogels (thermogels), valued for their conformability and minimal invasiveness, are increasingly used as in situ forming implants for drug delivery and as regenerative scaffolds. These gels exhibit sol-to-gel phase transitions at body temperature. As localized depots and scaffolds, these gels determine the chemical and mechanical environments and could dramatically influence the release kinetics of drugs or the fate of cells.

View Article and Find Full Text PDF

In this work, we present basic research on developing thermogel carriers containing high amounts of model antibody immunoglobulin G (IgG) with potential use as injectable molecules. The quantities of IgG loaded into the gel were varied to evaluate the possibility of tuning the dose release. The gel materials were based on blends of thermoresponsive and degradable ABA-type block copolymers composed of poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) or poly(lactide-co-caprolactone)-b-poly(ethylene glycol)-b-(lactide-co-caprolactone) (PLCL-PEG-PLCL).

View Article and Find Full Text PDF

Synthesis and characterization of methacryl glycol chitosan as a novel functionally advanced thermogel for biomedical applications.

Int J Biol Macromol

November 2024

Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

Thermo-responsive hydrogels (thermogels), known for their sol-gel transition capabilities, have garnered significant interest for biomedical applications over recent decades. However, conventional thermogels are hindered by intrinsic physicochemical and functional limitations that impede their broader utility. This study introduces methacryl glycol chitosan (MGC) as a novel thermogel, offering enhanced functionality and addressing these limitations.

View Article and Find Full Text PDF

Recent advances on thermosensitive hydrogels-mediated precision therapy.

Asian J Pharm Sci

June 2024

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China.

Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites, increased therapeutic efficacy, and reduced adverse effects. Over the past few years, sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential. These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!