AdVAV is a replication-deficient adenovirus type 5-vectored vaccine expressing the 83-kDa protective antigen (PA83) from Bacillus anthracis that is being developed for the prevention of disease caused by inhalation of aerosolized B. anthracis spores. A noninferiority study comparing the efficacy of AdVAV to the currently licensed Anthrax Vaccine Absorbed (AVA; BioThrax) was performed in New Zealand White rabbits using postchallenge survival as the study endpoint (20% noninferiority margin for survival). Three groups of 32 rabbits were vaccinated with a single intranasal dose of AdVAV (7.5 × 10(7), 1.5 × 10(9), or 3.5 × 10(10) viral particles). Three additional groups of 32 animals received two doses of either intranasal AdVAV (3.5 × 10(10) viral particles) or intramuscular AVA (diluted 1:16 or 1:64) 28 days apart. The placebo group of 16 rabbits received a single intranasal dose of AdVAV formulation buffer. All animals were challenged via the inhalation route with a targeted dose of 200 times the 50% lethal dose (LD50) of aerosolized B. anthracis Ames spores 70 days after the initial vaccination and were followed for 3 weeks. PA83 immunogenicity was evaluated by validated toxin neutralizing antibody and serum anti-PA83 IgG enzyme-linked immunosorbent assays (ELISAs). All animals in the placebo cohort died from the challenge. Three of the four AdVAV dose cohorts tested, including two single-dose cohorts, achieved statistical noninferiority relative to the AVA comparator group, with survival rates between 97% and 100%. Vaccination with AdVAV also produced antibody titers with earlier onset and greater persistence than vaccination with AVA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375354PMC
http://dx.doi.org/10.1128/CVI.00690-14DOI Listing

Publication Analysis

Top Keywords

anthrax vaccine
12
advav
8
vaccine absorbed
8
aerosolized anthracis
8
single intranasal
8
intranasal dose
8
dose advav
8
1010 viral
8
viral particles
8
dose
5

Similar Publications

The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.

View Article and Find Full Text PDF

Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.

View Article and Find Full Text PDF

Are we ready for the next anthrax outbreak? Lessons from a simulation exercise in a rural-based district in Uganda.

Epidemiol Infect

December 2024

Department of Wildlife, Animal Resources Management, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.

Anthrax is a bacterial zoonotic disease caused by We qualitatively examined facilitators and barriers to responding to a potential anthrax outbreak using the capability, opportunity, motivation behaviour model (COM-B model) in the high-risk rural district of Namisindwa, in Eastern Uganda. We chose the COM-B model because it provides a systematic approach for selecting evidence-based techniques and approaches for promoting the behavioural prompt response to anthrax outbreaks. Unpacking these facilitators and barriers enables the leaders and community members to understand existing resources and gaps so that they can leverage them for future anthrax outbreaks.

View Article and Find Full Text PDF

We present the results of the whole-genome sequencing of a strain isolated from a permafrost sample collected in Yakutia, Russia. This strain was named YakM12. Phylogenetic analysis showed that YakM12 belongs to the canSNP group A.

View Article and Find Full Text PDF

Bacillus anthracis, a gram-positive bacillus capable of forming spores, causes anthrax in mammals, including humans, and is recognized as a potential biological weapon agent. The diagnosis of anthrax is challenging due to variable symptoms resulting from exposure and infection severity. Despite the availability of a licensed vaccines, their limited long-term efficacy underscores the inadequacy of current human anthrax vaccines, highlighting the urgent need for next-generation alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!