CD151 is a member of the tetraspanin family that is implicated as a promoter of pathological or physiological angiogenesis. C-Met is expressed on a variety of cells including vascular endothelial cells (VECs) and up-regulated during angiogenesis. In this study, we investigated whether CD151 regulated migration, proliferation, tube formation and angiogenesis of human umbilical VECs (HUVECs) with activation of C-Met. Moreover, we studied whether CD151 could affect the angiogenic molecules such as nitric oxide (NO), vascular cell adhesion molecule-1 (VCAM-1) and vascular endothelial growth factor (VEGF). The expression of CD151 was determined by Western blotting. The cell proliferation assay was performed using the cell counting kit-8 (CCK-8) method and cell migration was assessed in microchemotaxis chambers by using fetal bovine serum (FBS) as the chemotactic stimulus. The angiogenic molecules were evaluated using ELISA. The NO level was detected using NO detection kit. The potential involvement of various signaling pathways was explored using relevant antibodies. We found that proliferation, migration and tube formation of HUVECs were promoted by CD151 with activation of C-Met, FAK and CDC42, while they were suppressed with CD151 knockdown by RNAi. Similarly, the levels of NO, VCAM-1 and VEGF in HUVECs were increased by CD151, but they were inhibited with CD151 knockdown by RNAi. These data suggested that CD151 could promote migration, proliferation, tube formation and angiogenesis of HUVECs, which was possibly related to the C-Met signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-015-1385-6 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
The hepatocyte growth factor (HGF) along with its receptor (c-MET) are crucial in preserving standard cellular physiological activities, and imbalances in the c-MET signaling pathway can lead to the development and advancement of tumors. It has been extensively demonstrated that immune checkpoint inhibitors (ICIs) can result in prolonged remission in certain patients. Nevertheless, numerous preclinical studies have shown that MET imbalance hinders the effectiveness of anti-PD-1/PD-L1 treatments through various mechanisms.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China.
Neuropilin 1 (NRP1) is upregulated in various types of malignant tumors, especially non-small-cell lung cancer (NSCLC). However, the precise mechanisms for membrane localization and regulation are not fully understood. Observations from super-resolution microscopy have revealed that NRP1 tends to form nanoscale clusters on the cell membrane, with these clusters varying significantly in size and density across different regions.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Chemistry, Faculty of Science, Cairo University, A. R, Egypt.
Background: Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, antiinflammatory, anticancer, and antioxidant effects.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!