Vulnerability to stressful life events is a hallmark of drug dependence that may persist long after cessation of drug intake and dramatically fuel key clinical features, such as deregulated up-shifted motivational states and craving. However, to date, no effective therapy is available for reducing vulnerability to stressful events in former drug users and drug-dependent patients, mostly because of poor knowledge of the mechanisms underlying it. In this study, we report that genetic inactivation of the stress-responsive corticotropin-releasing factor receptor-2 (CRF2-/-) completely eliminates the reemergence of increased nonrewarded nose-pokes, reflecting up-shifted motivational states, triggered by ethological environmental stressors long after cessation of morphine administration in mice. Accordingly, CRF2 receptor deficiency completely abolishes the increase in biomarkers of synthesis of major brain motivational substrates, such as ventral tegmental area (VTA) dopamine (DA) and amygdala γ-aminobutyric acid (GABA) systems, associated with the stress-induced reemergence of up-shifted motivational states long after opiate withdrawal. Nevertheless, neither CRF2 receptor deficiency nor long-term opiate withdrawal affects amygdala CRF or hypothalamus CRF expression, indicating preserved brain stress-coping systems. Moreover, CRF2 receptor deficiency does not influence the locomotor or the anxiety-like effect of long-term opiate withdrawal. Thus, the present results reveal an essential and specific role for the CRF2 receptor in the stress-induced reemergence of up-shifted motivational states and related alterations in brain motivational systems long after opiate withdrawal. These findings suggest new strategies for the treatment of the severe and long-lasting vulnerability that inexorably follows drug withdrawal and hinder drug abstinence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839523 | PMC |
http://dx.doi.org/10.1038/npp.2015.49 | DOI Listing |
Pharmacol Biochem Behav
December 2024
Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA. Electronic address:
Int J Mol Sci
November 2024
Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia.
Post-traumatic stress disorder (PTSD) is a multifactorial psychological disorder that affects different neurotransmitter systems, including the central CRH system. CRH acts via the CRHR1 and CRHR2 receptors, which exert opposite effects, i.e.
View Article and Find Full Text PDFPeptides
December 2024
Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
Corticotropin-releasing factor (CRF) activates the hypothalamic-pituitary-adrenal (HPA) axis and stimulates the noradrenergic neurotransmission, both processes being implicated in the pathogenesis of anxiety and depression, but the intimate site and mechanism of interaction of CRF and CRF-related peptides, named urocortins (UCN1, UCN2, UCN3), with noradrenaline (NA) was not fully elucidated yet. Therefore, the aim of the present study was to investigate the actions of CRF and urocortins on the NA released from the rat locus coeruleus (LC), the primary source of NA in the brain, and the participation of CRF receptors (CRF1 and CRF2) in these actions. In order to do so, male Wistar rats were used, their LC were isolated and dissected, and the LC slices were incubated with tritium-labelled NA, superfused and stimulated electrically.
View Article and Find Full Text PDFPLoS One
October 2024
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
Hippocampal neurons exhibit activation of both the conventional transmembrane adenylyl cyclases (tmACs) and the non-canonical soluble adenylyl cyclase (sAC) as sources of cyclic AMP (cAMP). These two cAMP sources play crucial roles in mediating signaling pathways downstream of CRHR1 in neuronal and neuroendocrine contexts. In this study, we investigate the involvement of both cAMP sources in the molecular mechanisms triggered by CRHR2α.
View Article and Find Full Text PDFNeurosci Biobehav Rev
August 2024
Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!