The persistent administration of β2‑adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long‑acting β2‑adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti‑α‑smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C‑β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5‑trisphosphate (IP3) was determined using an enzyme‑linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time‑ and dose‑dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol‑induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR‑cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol‑induced bronchoprotection tolerance by suppressing the protein expression of M3R.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394984 | PMC |
http://dx.doi.org/10.3892/mmr.2015.3307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!