The crystal and magnetic structures of brownmillerite-like Sr(2)Co(1.2)Ga(0.8)O(5) with a stable Co(3+) oxidation state at both octahedral and tetrahedral sites are refined using neutron powder diffraction data collected at 2 K (S.G. Icmm, a = 5.6148(6) Å, b = 15.702(2) Å, c = 5.4543(6) Å; R(wp) = 0.0339, R(p) = 0.0443, χ(2) = 0.775). The very large tetragonal distortion of CoO(6) octahedra (1.9591(4) Å for Co-O(eq) and 2.257(6) Å for Co-O(ax)) could be beneficial for the stabilization of the long-sought intermediate-spin state of Co(3+) in perovskite-type oxides. However, the large magnetic moment of octahedral Co(3+) (3.82(7)μ(B)) indicates the conventional high-spin state of Co(3+) ions, which is further supported by the results of a combined theoretical and experimental soft X-ray absorption spectroscopy study at the Co-L(2,3) edges on Sr(2)Co(1.2)Ga(0.8)O(5). A high-spin ground state of Co(3+) in Sr(2)Co(1.2)Ga(0.8)O(5) resulted in much lower in comparison with a LaCoO(3) linear thermal expansion coefficient of 13.1 ppm K(-1) (298-1073 K) determined from high-temperature X-ray powder diffraction data collected in air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt03670k | DOI Listing |
Chem Sci
December 2024
The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology Wuhan 430081 China.
Alkali activation is a common method to prepare commercial porous carbon. In a mixed alkali activation system, the role of each individual alkali has generally been assumed to be the same as in a single alkali activation system, and the low corrosiveness of weak alkalis has mainly been emphasized. However, the intrinsic roles of the individual alkalis should be understood in detail and redefined to illuminate the activation pathways from the perspective of internal chemical reactions rather than corrosiveness.
View Article and Find Full Text PDFHeliyon
January 2025
Institute for Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
Calcite (CaCO), a common component of calcium-based fertilizers, has been recognized for its effectiveness as a cadmium (Cd) immobilization agent in the solidification/stabilization (S/S) method. This strategy is a widely used chemical remediation technique aimed at reducing the bioavailability and toxicity of Cd in contaminated soils. This study comprehensively evaluated the potential of calcite for Cd remediation through geochemical analyses, including adsorption isotherms, saturation index, ion concentration changes, and X-ray diffraction (XRD) analysis.
View Article and Find Full Text PDFChemistry
December 2024
Tohoku University - Katahira Campus: Tohoku Daigaku, Advanced Institute for Materials Research, Advanced Institute for Materials Research, 980-8577, Sendai, JAPAN.
A series of CoFe2O4 materials derived from metal-organic framework were successfully constructed by the solvent-thermal method. The morphology of a typical sample CoFe2O4-1 was mostly in the form of a cubic rod-like structure with a size distribution of 3.2 ± 0.
View Article and Find Full Text PDFACS Nanosci Au
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolysis. Ru- and Ir-based oxides are currently state-of-the-art electrocatalysts for acidic OER, but their high cost limits their widespread application. CoO is a promising alternative, yet the performance requires further improvement.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Debye Institute for Nanomaterials Science, Utrecht University, 3584 GG Utrecht, The Netherlands.
To understand the electronic-structure change of LiCoO, a widely used cathode material in Li-ion batteries, during charge-discharge, we performed soft X-ray absorption spectroscopy (XAS) and resonant soft X-ray emission spectroscopy (RXES) of the Co L edge in combination with charge-transfer multiplet calculations. The RXES profile significantly changed for the charged state at 4.2 V Li/Li, corresponding to the oxidation reaction from a Co low-spin state for the initial state, while the XAS profile exhibited small changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!