A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300 °C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO-LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4nr06371f | DOI Listing |
Nat Commun
December 2024
Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany.
In topological band theory, phonon boundary modes consequence of a topologically non-trivial band structure feature desirable properties for atomically-precise technologies, such as robustness against defects, waveguiding, and one-way transport. These topological phonon boundary modes remain to be studied both theoretically and experimentally in synthetic materials, such as polymers and supramolecular assemblies at the atomistic level under thermal fluctuations. Here we show by means of molecular simulations, that surface-confined Su-Schrieffer-Heeger (SSH) phonon analogue models express robust topological phonon boundary modes at heavy boundaries and under thermal fluctuations.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
ACS Nano
July 2024
Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany.
Transmetalation represents an appealing strategy toward fabricating and tuning functional metal-organic polymers and frameworks for diverse applications. In particular, building two-dimensional metal-organic and organometallic networks affords versatile nanoarchitectures of potential interest for nanodevices and quantum technology. The controlled replacement of embedded metal centers holds promise for exploring versatile material varieties by serial modification and different functionalization.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan. Electronic address:
Salivary α-amylase (α-ALS) has drawn attention as a possible bioindicator for dental caries. Herein, combining the synergistic properties of multi-walled carbon nanotubes (MWCNTs), β-cyclodextrin (β-CD) and starch, an electrochemical sensor is constructed employing ferrocene (FCN) as an electrochemical indicator to oversee the progression of the enzymatic catalysis of α-ALS. The method involves a two-step chemical reaction sequence on a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFNat Commun
January 2024
BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
Keen desires for artificial mimicry of biological polymers and property improvement of synthesized ones have triggered intensive explorations for sequence-controlled copolymerization. However, conventional synthesis faces great challenges to achieve this goal due to the strict requirements on reaction kinetics of comonomer pairs and tedious synthetic processes. Here, sequence-controlled alternating copolymerization with molecular precision is realized on surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!