An ultrasensitive detection of 17β-estradiol using a gold nanoparticle-based fluorescence immunoassay.

Analyst

Shandong Provincial Key Laboratory of Chemical Energy Storage and spectrometry (LC/MS/MS) and gas chromatography-mass Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

Published: March 2015

A novel ultrasensitive amplification immunoassay for the determination of 17β-estradiol (E2) is reported based on the nanoparticle signal amplification platform. It involves two types of particles: magnetic microparticles (MMPs) functionalized with an anti-E2 antibody produced in rabbit as a capture probe; double-codified gold nanoparticles (DC-AuNPs) modified with both goat anti-rabbit antibody and SH-dsDNA-biotin as a signal amplifier; and avidin-FITC was added to link to the SH-dsDNA-biotin as a tracer. The competitive reaction of the anti-E2 antibody immobilized on magnetic microparticles with estradiol in the sample solution and with the goat anti-rabbit antibody on double-codified gold nanoparticles results in a complex involving the DC-AuNPs and MMPs. Under optimized conditions, the linear range of E2 is from 1.0 × 10(-5) to 1.0 ng mL(-1), and the detection limit of the assay could reach up to 6.37 × 10(-6) ng mL(-1). It was applied to determine E2 in human urine, with mean percent recoveries in the range of 96.5%-107.4%, and relative standard deviations were below 8.1%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an01952kDOI Listing

Publication Analysis

Top Keywords

magnetic microparticles
8
anti-e2 antibody
8
double-codified gold
8
gold nanoparticles
8
goat anti-rabbit
8
anti-rabbit antibody
8
ultrasensitive detection
4
detection 17β-estradiol
4
17β-estradiol gold
4
gold nanoparticle-based
4

Similar Publications

Free pectinase is commonly employed as a biocatalyst in wine clarification; however, its removal, recovery, and reuse are not feasible. To address these limitations, this study focuses on the immobilization of a commercial pectinolytic preparation (Pec) onto highly porous polymer microparticles (MPs). Seven microparticulate polyamide (PA) supports, namely PA4, PA6, PA12 (with and without magnetic properties), and the copolymeric PA612 MP, were synthesized through activated anionic ring-opening polymerization of various lactams.

View Article and Find Full Text PDF
Article Synopsis
  • Electric quadrupole traps effectively levitate charged objects, from protons to small particles, influencing their rotational behavior when charge distribution varies.
  • Experiments reveal a shift in motion for microparticles, transitioning from librational to synchronized rotation with the trap drive due to torque effects from the electric quadrupole.
  • This technique showcases versatility by spinning various particles like silicon microrods and microdiamonds, with the latter enabling detailed motion analysis through embedded nitrogen vacancy centers, promising advances in levitated quantum nanomechanics.
View Article and Find Full Text PDF

Development of Simple and Rapid Bead-Based Cytometric Immunoassays Using Superparamagnetic Hybrid Core-Shell Microparticles.

ACS Meas Sci Au

December 2024

Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.

Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.

View Article and Find Full Text PDF

Measuring Bacterial Flagellar Motor Dynamics via a Bead Assay.

Methods Mol Biol

December 2024

Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France.

The bacterial flagellar motor (BFM) is a rotary molecular machine that drives critical bacterial processes including motility, chemotaxis, biofilm formation, and infection. For over two decades, the bead assay, which measures the rotation of a microparticle attached to the flagellum of a surface-attached bacterium, has been instrumental in deciphering the motor's biophysical mechanisms. This technique has not only quantified the rotational speed and frequency of directional switching as a function of the viscous load on the flagellum but has also revealed the BFM's capacity for mechanosensitive speed modulation, adapting to environmental conditions.

View Article and Find Full Text PDF

Printing Untethered Self-Reconfigurable, Self-Amputating Soft Robots from Recyclable Self-Healing Fibers.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.

Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!