Based on its pleiotropic effects, erythropoietin can decrease inflammation, oxidative stress, and apoptosis. Erythropoietin provides organ protection for the heart, brain, and kidney in diverse preclinical animal studies, especially models that include ischemia-reperfusion injury and/or inflammation. However, large clinical studies in coronary reperfusion, heart failure, stroke, acute kidney injury, and chronic renal disease have failed to demonstrate improved outcomes. A study in a previous issue of Critical Care examining the ability of erythropoietin to prevent or ameliorate acute kidney injury in patients undergoing complex valvular heart surgery is similarly negative. The failure of erythropoietin in clinical studies may be due to an inadequate dose, since the receptors responsible for organ protection may require higher concentrations than those responsible for erythropoiesis. However, as has occurred in studies in sepsis and acute respiratory distress syndrome, the negative studies probably reflect an inadequate understanding of the complexity of the underlying processes with multiple redundant and interacting pathways that may differ among the large number of different cell types involved. As tools to understand this complexity and integrate it on an organismal basis continue to evolve, we will develop the ability to use erythropoietin and related nonhematopoietic agents for organ protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331307PMC
http://dx.doi.org/10.1186/s13054-014-0526-9DOI Listing

Publication Analysis

Top Keywords

organ protection
16
erythropoietin organ
8
clinical studies
8
acute kidney
8
kidney injury
8
ability erythropoietin
8
erythropoietin
6
studies
5
protection
4
protection lessons
4

Similar Publications

: Transobturator tape (TOT) procedures are a widely used and effective treatment for stress urinary incontinence (SUI), but there is limited research on mesh-related complications and revision surgeries. This study aimed to evaluate the incidence of revision surgeries and mesh-related complications following TOT procedures and identify potential risk factors influencing these outcomes. : This retrospective study analyzed data from patients who underwent TOT procedures at the specialized incontinence center of University Hospital Aachen (UHA), Germany, between January 2010 and May 2023.

View Article and Find Full Text PDF

The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention.

Nutrients

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China.

Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured.

View Article and Find Full Text PDF

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

Protocatechuate acid (PCA) is a phenolic acid naturally synthesized by various organisms. Protocatechuic acid is synthesized by plants for physiological, metabolic functions, and self-defense, but extraction from plants is less efficient compared to the microbial culture process. The microbial synthesis of protocatechuic acid is sustainable and, due to its high yield, can save energy consumption when producing the same amount.

View Article and Find Full Text PDF

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!