Antigen presenting cells (APC) are well-recognized therapeutic targets for intracellular infectious diseases, including visceral leishmaniasis. These targets have raised concerns regarding their potential for drug delivery due to overexpression of a variety of receptors for pathogen associated molecular pathways after infection. Since, lipoteichoic acid (LTA), a surface glycolipid of Gram-positive bacteria responsible for recognition of bacteria by APC receptors that also regulate their activation for pro-inflammatory cytokine secretion, provides additive and significant protection against parasite. Here, we report the nanoarchitechture of APC focused LTA functionalized amphotericin B encapsulated lipo-polymerosome (LTA-AmB-L-Psome) delivery system mediated by self-assembly of synthesized glycol chitosan-stearic acid copolymer (GC-SA) and cholesterol lipid, which can activate and target the chemotherapeutic agents to Leishmania parasite resident APC. Greater J774A and RAW264.7 macrophage internalization of FITC tagged LTA-AmB-L-Psome compared to core AmB-L-Psome was observed by FACSCalibur cytometer assessment. This was further confirmed by higher accumulation in macrophage rich liver, lung and spleen during biodistribution study. The LTA-AmB-L-Psome overcame encapsulated drug toxicity and significantly increased parasite growth inhibition beyond commercial AmB treatment in both in vitro (macrophage-amastigote system; IC50, 0.082 ± 0.009 μg/mL) and in vivo (Leishmania donovani infected hamsters; 89.25 ± 6.44% parasite inhibition) models. Moreover, LTA-AmB-L-Psome stimulated the production of protective cytokines like interferon-γ (IFN-γ), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase and nitric oxide with down-regulation of disease susceptible cytokines, like transforming growth factor-β (TGF-β), IL-10, and IL-4. These data demonstrate the potential use of LTA-functionalized lipo-polymerosome as a biocompatible lucrative nanotherapeutic platform for overcoming toxicity and improving drug efficacy along with induction of robust APC immune responses for effective therapeutics of intracellular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm5015156 | DOI Listing |
J Infect
January 2025
Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA. Electronic address:
Objectives: Pediatric tuberculosis (TB) diagnosis is complicated by challenges in obtaining invasive respiratory specimens that frequently contain few Mycobacterium tuberculosis (Mtb) bacilli. We report the diagnostic performance of an Mtb antigen-derived peptide (MAP-TB) assay and its ability to monitor TB treatment response.
Methods: Study cohorts enrolled children who presented with presumptive TB at two hospitals in South Africa from 2012 to 2017 (157 children aged <13 years) and at community-based clinics in the Dominican Republic from 2019 to 2023 (101 children aged <18 years).
J Adv Res
January 2025
Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China. Electronic address:
Introduction: Parkin-mediated mitophagy is essential for the clearance of damaged mitochondria, and it inhibits tumour development. The role of mitophagy in modulating tumour immunity is becoming clearer, but the underlying mechanism is still poorly understood.
Objective: This study was designed to examine the role for Parkin in the immune microenvironment of liver tumors induced by carbon tetrachloride (CCl).
Biomaterials
December 2024
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China. Electronic address:
As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress.
View Article and Find Full Text PDFSemin Arthritis Rheum
December 2024
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Immunology, CDB, Hospital Clínic, Barcelona, Spain.
Introduction: Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a promising treatment for hematological malignancies. However, its association with immune-related complications such as rheumatic complications, is not well defined.
Methods: We conducted a retrospective study to analyze rheumatic complications in 310 patients treated with CAR-T therapy at a single center from January 2020 to May 2024.
Mol Pharm
January 2025
School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!