Effect of nonendocytic uptake of nanoparticles on human bronchial epithelial cells.

Anal Chem

†Center for Affordable Nanoengineering of Polymeric Biomedical Devices, ‡William G. Lowrie Department of Chemical and Biomolecular Engineering, and §Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States.

Published: March 2015

The toxicity of artificial nanoparticles is a major concern in industrial applications. Cellular uptake of hard nanoparticles could follow either endocytic or nonendocytic pathways, leading to different stimuli to the cells. Yet the cellular responses to nanoparticles following different pathways have not been compared due to the lack of an independent nonendocytic delivery method. We applied a unique delivery method, nanochannel electroporation (NEP), to produce predominantly nonendocytic uptakes of quantum dots (Q-dots) and multiwalled carbon nanotubes (MWCNTs) with different chemical modifications. NEP delivery bypassed endocytosis by electrophoretic injection of nanoparticles into human bronchial epithelial (BEAS-2B) cells at different dosages. Conventional exposure by direct nanoparticle suspending in cell culture medium was also performed as control. The dosage-dependent responses to nanoparticles under different uptake pathways were compared. Fluorescence colocalization demonstrated that nanoparticles followed both endocytic and nonendocytic pathways for cell entry in contact exposure, whereas NEP delivery of nanoparticles bypassed endocytosis. Nonendocytic entry resulted in much higher oxidation stress and, for MWCNTs, more cell death in BEAS-2B cells. Despite the observation that most nanoparticles were taken up by cells through endocytosis, the minor nonendocytic entry of nanoparticles seemed to dominate the overall cellular response in conventional contact exposure. Our finding suggests that prevention against nonendocytic uptake could help reduce the toxicity of hard nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac503366wDOI Listing

Publication Analysis

Top Keywords

nanoparticles
11
nonendocytic
8
nonendocytic uptake
8
nanoparticles human
8
human bronchial
8
bronchial epithelial
8
hard nanoparticles
8
endocytic nonendocytic
8
nonendocytic pathways
8
responses nanoparticles
8

Similar Publications

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis.

J Nanobiotechnology

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.

Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!