Background: Knee osteoarthritis (OA) is largely attributable to chronic excessive and aberrant joint loading. The purpose of this pilot study was to quantify radiographic changes in subchondral bone after treatment with a minimally invasive joint unloading implant (KineSpring(®) Knee Implant System).

Methods: Nine patients with unilateral medial knee OA resistant to nonsurgical therapy were treated with the KineSpring System and followed for 2 years. Main outcomes included Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain, function, and stiffness subscores and independent core laboratory determinations of joint space width and fractal signature of the tibial cortex.

Results: WOMAC scores, on average, improved by 92% for pain, 91% for function, and 79% for stiffness over the 2-year follow-up period. Joint space width in the medial compartment of the treated knee significantly increased from 0.9 mm at baseline to 3.1 mm at 2 years; joint space width in the medial compartment of the untreated knee was unchanged. Fractal signatures of the vertically oriented trabeculae in the medial compartment decreased by 2.8% in the treated knee and increased by 2.1% in the untreated knee over 2 years. No statistically significant fractal signature changes were observed in the horizontally oriented trabeculae in the medial compartment or in the horizontal or vertical trabeculae of the lateral compartment in the treated knee.

Conclusion: Preliminary evidence suggests that the KineSpring System may modify knee OA disease progression by increasing joint space width and improving subchondral bone trabecular integrity, thereby reducing pain and improving joint function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315540PMC
http://dx.doi.org/10.2147/CIA.S76982DOI Listing

Publication Analysis

Top Keywords

joint space
16
space width
16
medial compartment
16
subchondral bone
12
fractal signature
12
knee
9
joint
8
joint unloading
8
unloading implant
8
bone trabecular
8

Similar Publications

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

Objective: During percutaneous endoscopic interlaminar discectomy (PEID), a range of technologies including medical robotics, visual navigation, and spatial registration have been proposed to expand the application scope and success rate of minimally invasive surgery. The use of robotic technology in surgery is conducive to improving accuracy and reducing risk. This study aims to introduce a precise and efficient targeting method tailored for robot-assisted positioning under C-arm fluoroscopy inPEID.

View Article and Find Full Text PDF

Cu-EAB zeolite catalyst: A promising candidate with excellent SO poisoning resistance for NH-SCR reaction.

J Hazard Mater

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

In this work, we synthesized Cu-EAB catalysts with an EAB topology for the NH-SCR of NO and evaluated their resistance to SO poisoning for the first time. The Cu-EAB catalyst showed superior NO conversion and selectivity for N, along with a notable tolerance to high space velocities and SO, outperforming the commercial Cu-CHA catalyst. This enhanced resistance was attributed to the Cu species formation at the 2.

View Article and Find Full Text PDF

MSAB limits osteoarthritis development and progression through inhibition of β-catenin-DDR2 signaling.

Bioact Mater

April 2025

Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!