Unlabelled: Ebola viruses (EBOV) cause severe disease in humans and nonhuman primates with high mortality rates and continue to emerge in new geographic locations, including several countries in West Africa, the site of a large ongoing outbreak. Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense molecules that are able to target mRNAs in a sequence-specific fashion and suppress translation through steric hindrance. We previously showed that the use of PMOs targeting a combination of VP35 and VP24 protected rhesus monkeys from lethal EBOV infection. Surprisingly, the present study revealed that a PMOplus compound targeting VP24 alone was sufficient to confer protection from lethal EBOV infection but that a PMOplus targeting VP35 alone resulted in no protection. This study further substantiates recent data demonstrating that VP24 may be a key virulence factor encoded by EBOV and suggests that VP24 is a promising target for the development of effective anti-EBOV countermeasures.

Importance: Several West African countries are currently being ravaged by an outbreak of Ebola virus (EBOV) that has become a major epidemic affecting not only these African countries but also Europe and the United States. A better understanding of the mechanism of virulence of EBOV is important for the development of effective treatments, as no licensed treatments or vaccines for EBOV disease are currently available. This study of phosphorodiamidate morpholino oligomers (PMOs) targeting the mRNAs of two different EBOV proteins, alone and in combination, demonstrated that targeting a single protein was effective at conferring a significant survival benefit in an EBOV lethal primate model. Future development of PMOs with efficacy against EBOV will be simplified if only one PMO is required instead of a combination, particularly in terms of regulatory approval.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337572PMC
http://dx.doi.org/10.1128/mBio.02344-14DOI Listing

Publication Analysis

Top Keywords

phosphorodiamidate morpholino
12
ebov
10
targeting vp24
8
rhesus monkeys
8
monkeys lethal
8
ebola virus
8
morpholino oligomers
8
oligomers pmos
8
pmos targeting
8
lethal ebov
8

Similar Publications

Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.

View Article and Find Full Text PDF

Background: Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles.

View Article and Find Full Text PDF

Phosphorodiamidate Morpholino Oligonucleotides (PMOs) have been well established in the milieu of FDA-approved oligonucleotide-based drugs in the past decade. Given their relevance in antisense therapeutics, a DNA/RNA synthesizer-compatible modular synthesis protocol of PMOs is long awaited to explore next-generation PMO chimeras with other therapeutically proven oligonucleotide backbones. Herein, we demonstrate a streamlined 5' → 3'phosphoramidite approach for the synthesis of PMOs using -butyl-protected 5'-morpholino phosphoramidites, which were synthesized from 5'-OH morpholino monomers derived from commercially available ribonucleosides.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphorodiamidate morpholino oligomers (PMOs) are weekly intravenous treatments approved for Duchenne muscular dystrophy (DMD) that allow for certain exon skipping, but real-world usage data is scarce.
  • The study used data from MarketScan commercial and Medicaid claims between 2018-2021 to analyze PMO treatment patterns, finding 133 patients with claims for PMOs, generally aged around 14 years and predominantly male.
  • Results showed a high median proportion of days covered at 83.4%, with over half of the patients maintaining continuous treatment coverage, and a significant majority of those with treatment gaps later resumed PMO claims despite potential underestimations from the claims data.*
View Article and Find Full Text PDF
Article Synopsis
  • Eteplirsen, golodirsen, and casimersen are drugs approved for treating Duchenne muscular dystrophy (DMD) that target specific genetic mutations associated with the disease through a mechanism called exon skipping.
  • In studies, these drugs showed similar metabolism and pharmacokinetic properties across various animal models, with consistent plasma exposure and low plasma protein binding.
  • The research suggests that these PMOs share key characteristics that could support the development of a broader PMO drug class, potentially leading to new treatments for genetic conditions like DMD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!