Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP(6)), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP(6) functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP(6)-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP(6) binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP(6) binding surface show increased sensitivity to InsP(6) concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP(6) sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP(6)-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP(6) functions in plant growth and reproduction and that Gle1 variants with increased InsP(6) sensitivity may be useful for engineering high-yielding low-phytate crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456929 | PMC |
http://dx.doi.org/10.1105/tpc.114.132134 | DOI Listing |
J Biol Chem
December 2024
mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico.
The kingdom of fungi contains highly diverse species. However, fundamental processes sustaining life such as RNA metabolism are much less comparatively studied in Fungi than in other kingdoms. A key factor in the regulation of mRNA expression is the cap-binding protein eIF4E, which plays roles in mRNA nuclear export, storage and translation.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.
ENY2 is an evolutionarily conserved multifunctional protein and is a member of several complexes that regulate various stages of gene expression. ENY2 is a subunit of the TREX-2 complex, which is necessary for the export of bulk mRNA from the nucleus to the cytoplasm through the nuclear pores in many eukaryotes. The wide range of ENY2 functions suggests that it can also associate with other protein factors or complexes.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biological Sciences, Hunter College, The City University of New York, New York, NY, United States of America.
Nuclear pore proteins control nucleocytoplasmic transport; however, certain nucleoporins play regulatory roles in activities such as transcription and chromatin organization. The fission yeast basket nucleoporin Nup211 is implicated in mRNA export and is essential for cell viability. Nup211 preferentially associates with heterochromatin, however, it is unclear whether it plays a role in regulating transcription.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America.
A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23.
View Article and Find Full Text PDFPlant Physiol
December 2024
Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France.
As obligate intracellular parasites, viruses depend on host proteins and pathways for their multiplication. Among these host factors, specific nuclear proteins are involved in the life cycle of some cytoplasmic replicating RNA viruses, although their role in the viral cycle remains largely unknown. The polerovirus turnip yellows virus (TuYV) encodes a major coat protein (CP) and a 74 kDa protein known as the readthrough (RT) protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!