Improvement of chemotherapeutic drug efficacy by endoplasmic reticulum stress.

Endocr Relat Cancer

Department of Biological ChemistryUniversity of Athens Medical School, Athens 11527, GreeceDepartment of Basic SciencesDental School, University of Athens, Athens 11527, GreeceDepartment of PathologyMicrobiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USADepartment of Drug Discovery and Biomedical SciencesUniversity of South Carolina, Columbia, South Carolina 29425, USA Department of Biological ChemistryUniversity of Athens Medical School, Athens 11527, GreeceDepartment of Basic SciencesDental School, University of Athens, Athens 11527, GreeceDepartment of PathologyMicrobiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USADepartment of Drug Discovery and Biomedical SciencesUniversity of South Carolina, Columbia, South Carolina 29425, USA

Published: April 2015

Tunicamycin (TUN), an inhibitor of protein glycosylation and therefore a potent stimulator of endoplasmic reticulum (ER) stress, has been used to improve anticancer drug efficacy, but the underlying mechanism remains obscure. In this study, we show that acute administration of TUN in mice induces the unfolded protein response and suppresses the levels of P21, a cell cycle regulator with anti-apoptotic activity. The inhibition of P21 after ER stress appears to be C/EBP homologous protein (CHOP)-dependent because in CHOP-deficient mice, TUN not only failed to suppress, but rather induced the expression of P21. Results of promoter-activity reporter assays using human cancer cells and mouse fibroblasts indicated that the regulation of P21 by CHOP operates at the level of transcription and involves direct binding of CHOP transcription factor to the P21 promoter. The results of cell viability and clonogenic assays indicate that ER-stress-related suppression of P21 expression potentiates caspase activation and sensitizes cells to doxorubicin treatment, while administration of TUN to mice increases the therapeutic efficacy of anticancer therapy for HepG2 liver and A549 lung cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1530/ERC-15-0019DOI Listing

Publication Analysis

Top Keywords

drug efficacy
8
endoplasmic reticulum
8
reticulum stress
8
administration tun
8
tun mice
8
p21
6
improvement chemotherapeutic
4
chemotherapeutic drug
4
efficacy endoplasmic
4
stress tunicamycin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!