Molecular dispersion energy parameters for alkali and halide ions in aqueous solution.

J Chem Phys

Laboratory of Engineering Thermodynamics, University of Kaiserslautern, 67663 Kaiserslautern, Germany.

Published: January 2014

Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li(+), Na(+), K(+), Rb(+), Cs(+), F(-), Cl(-), Br(-), and I(-). The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4858392DOI Listing

Publication Analysis

Top Keywords

alkali halide
8
halide ions
8
aqueous solutions
8
ions
5
molecular dispersion
4
dispersion energy
4
energy parameters
4
parameters alkali
4
ions aqueous
4
aqueous solution
4

Similar Publications

Aqueous Alkaline Zinc-Iodine Battery with Two-Electron Transfer.

ACS Nano

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

While many cathode materials have been developed for mild electrolyte-based Zn batteries, the lack of cathode materials hinders the progress of alkaline zinc batteries. Halide iodine, with its copious valence nature and redox possibilities, is considered a promising candidate. However, energetic alkaline iodine redox chemistry is impeded by an alkali-unadapted I element cathode and thermodynamically unstable reaction products.

View Article and Find Full Text PDF

The hydration shell of a protein is so important and an integral part of it, that protein's structure, stability and functionality cannot be conceived in its absence. This layer has unique properties not found in bulk water. However, ions, always present in the protein environment, disturb the hydration shell depending on their nature and concentration.

View Article and Find Full Text PDF

This communication represents the chemical alternative to the previous two papers dealing with the influence of positively charged alkali cations on the adsorption properties of the series of the standard surfactant system of alkali-perfluorocarbon octanoates. Now, this contribution describes the adsorption properties of the negatively charged cationic surfactant series of trimethyldodecyl-ammonium halides. In our latest contributions, we have put forward a new model of adsorption of ionic surfactants.

View Article and Find Full Text PDF

Novel high-stopping power scintillators for medical applications.

Proc SPIE Int Soc Opt Eng

February 2024

Radiation Monitoring Devices, Inc., 44 Hunt St., Watertown, MA, USA 02472- 4624.

Development of new scintillator materials is a continuous effort, which recently has been focused on materials with higher stopping power. Higher stopping power can be achieved if the compositions include elements such as Tl (Z=81) or Lu (Z=71), as the compounds gain higher densities and effective atomic numbers. In context of medical imaging this translates into high detection efficiency (count rates), therefore, better image quality (statistics, thinner films) or lower irradiation doses to patients in addition to lowering of cost.

View Article and Find Full Text PDF

Broadband emission in alkali halides triggered by Sb doping.

Chem Commun (Camb)

December 2024

Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.

Broadband emission in a series of alkali chlorides are achieved by doping NaCl, KCl, and RbCl with Sb. These compounds show photoluminescence peaks in the visible range of 536-574 nm with long lifetimes in the microsecond range. Our findings could offer valuable insights for the development of new lead-free phosphors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!