The HXeY⋯H2O complexes (Y = Cl, Br, and I) are studied theoretically and experimentally. The calculations at the CCSD(T)/def2-TZVPPD level of theory predict two stable structures for Y = Cl and Br and one structure for Y = I, with interaction energies up to about -7 kcal mol(-1). In the experiments, we have identified several infrared absorption bands originating from the H-Xe stretching mode of these complexes in a xenon matrix. The monomer-to-complex frequency shifts of this mode are up to +82 cm(-1) (Y = Cl), +101 cm(-1) (Y = Br), and +138 cm(-1) (Y = I), i.e., the shift is smaller for more strongly bound molecules. Based on the agreement of the experimental and theoretical results, the observed bands are assigned to the most stable planar structure with an O-H⋯Y-Xe hydrogen bond.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4862692DOI Listing

Publication Analysis

Top Keywords

hxey⋯h2o complexes
8
matrix-isolation computational
4
computational study
4
study hxey⋯h2o
4
complexes hxey⋯h2o
4
complexes studied
4
studied theoretically
4
theoretically experimentally
4
experimentally calculations
4
calculations ccsdt/def2-tzvppd
4

Similar Publications

Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs.

View Article and Find Full Text PDF

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions.

View Article and Find Full Text PDF

Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.

View Article and Find Full Text PDF

Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!