Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats.

Behav Brain Res

Neuroscience Program, Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA, United States.

Published: May 2015

Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system. A separate experiment measured electroencephalographic (EEG) activity following kainic acid treatment. Results of the voltammetry experiment revealed that the rise in hippocampal glutamate induced by kainic acid is attenuated in exercising rats compared to sedentary controls, indicating that the exercise-induced protection against seizures involves regulation of hippocampal glutamate release. The findings reveal the potential benefit of regular exercise in the treatment and prevention of seizure disorders and suggest a possible neurobiological mechanism underlying this effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2015.02.002DOI Listing

Publication Analysis

Top Keywords

kainic acid
20
hippocampal glutamate
16
induced kainic
8
glutamate release
8
hippocampal
5
glutamate
5
kainic
5
acid
5
chronic exercise
4
exercise dampens
4

Similar Publications

The Epileptiogenic Modified Therapy: Regulating the Dynamic of Microglia via ROS-Responsive Cascade Nano-Formulation.

Adv Healthc Mater

December 2024

Department of Neurosurgery, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Southern Medical University, Guangzhou, 510280, China.

Pharmacological treatment of epilepsy presents several challenges, particularly the ineffectiveness of antiseizure medicines (ASMs) in modifying disease. In fact, the removal of reactive oxygen species (ROS) and preconditioning with tolerable dose of nitric oxide (NO) can activate neuroprotective mechanisms during latency and enhance tolerance to oxidative stress during seizures. To address this, a ROS-responsive cascade Nano-formulation (RRCN) is developed, which will transform ROS into NO.

View Article and Find Full Text PDF

Mammalian parenting is an unusually demanding commitment. How has the reward system been co-opted to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient primiparous mouse dams.

View Article and Find Full Text PDF

Stress is a common seizure trigger that has been implicated in worsening epilepsy outcomes, which encompasses psychiatric and cognitive comorbidities and sudden unexpected death in epilepsy (SUDEP) risk. The neuroendocrine response to stress is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and HPA axis dysfunction worsens epilepsy outcomes, increasing seizure burden, behavioral comorbidities, and risk for SUDEP in mice. Early life stress (ELS) reprograms the HPA axis into adulthood, impacting both the basal and stress-induced activity.

View Article and Find Full Text PDF

A Neuronal Signal Sorting and Amplifying Nanosensor for EEG-Concordant Imaging-Guided Precision Epilepsy Ablation.

Adv Mater

December 2024

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.

Surgery remains an essential treatment for managing drug-resistant focal epilepsy, but its accessibility and efficacy are limited in patients without distinct structural abnormalities on magnetic resonance imaging (MRI). Potassium ion (K), a critical marker for seizure-associated neuronal signaling, shows significant promise for designing sensors targeting hidden epileptic foci. However, existing sensors cannot cross the blood-brain barrier and lack the ability to specifically enrich and amplify K signals in the brain with high temporal and spatial resolution.

View Article and Find Full Text PDF

Life Course Considerations in Environmental Health: Developmental Neurotoxicity of Domoic Acid at Doses Below Acute Effect Levels in Adult Humans.

Birth Defects Res

December 2024

Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA.

Background: Current US federal action levels for domoic acid (DA) in seafood are based on acute toxicity observed in exposed adult humans. Life course considerations have not been incorporated. The potential for developmental neurotoxicity (DNT) at permissible DA levels has previously been noted, but not methodically assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!