Due to recent developments in nanotechnology, nanomaterials (NMs) such as graphene oxide (GO) may enter the soil environment with mostly unknown consequences. We investigated the effects of GO on soil microbial activity in a 59-day soil incubation study. For this, high-purity GO was prepared and characterized. Soils were treated with up to 1 mg GO g(-1) soil, and the changes in the activities of 1,4-β-glucosidase, cellobiohydrolase, xylosidase, 1,4-β-N-acetyl glucosaminidase, and phosphatase and microbial biomass were determined. 0.5-1 mg GO g(-1) soil lowered the activity of xylosidase, 1,4-β-N-acetyl glucosaminidase, and phosphatase by up to 50% when compared to that in the control soils up to 21 days of incubation. Microbial biomass in soils treated with GO was not significantly different from that in control soils throughout the incubation period, and the soil enzyme activity and microbial biomass were not significantly correlated in this study. Our results indicate that soil enzyme activity can be lowered by the entry of GO into soils in short term but it can be recovered afterwards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.01.077 | DOI Listing |
Lett Appl Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:
Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.
View Article and Find Full Text PDFSci China Life Sci
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!