Production and retention of methylmercury in inundated boreal forest soils.

Environ Sci Technol

†Department of Chemistry and Biochemistry, River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, United States.

Published: March 2015

The Flooded Uplands Dynamics Experiment (FLUDEX) was an ecosystem-scale study examining the production of methylmercury (MeHg) and greenhouse gases from reservoirs constructed on an upland boreal forest landscape in order to quantify their dependence upon carbon stores. We detail the within-reservoir production and storage of MeHg before, during, and nine years after the experiment. The reservoirs were net MeHg producers during the first two years of flooding, and net demethylating systems afterward. During years 1-3, a rapid pulse of MeHg and total Hg was observed in floodwater, followed by substantial increases in MeHg in seston and sediment. Resampling of the dry reservoirs nine years after the experiment ended indicated that organic soil MeHg was still 8 to 52-fold higher than preflood conditions, and averaged 86% of the levels recorded at the end of the third flooding year. Both total Hg and MeHg retention in soil were a strong function of organic carbon content. The time scale of soil MeHg retention may help explain the decadal time lag frequently observed for the decrease of piscivorous fish Hg concentrations in new reservoirs. Predicted extreme precipitation events associated with climate change may serve to make landscapes more susceptible to this process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es505398zDOI Listing

Publication Analysis

Top Keywords

boreal forest
8
mehg
8
years experiment
8
soil mehg
8
mehg retention
8
production retention
4
retention methylmercury
4
methylmercury inundated
4
inundated boreal
4
forest soils
4

Similar Publications

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

Rapid warming in polar regions is causing large changes to ecosystems, including altering environmentally available mercury (Hg). Although subarctic freshwater systems have simple vertebrate communities, Hg in amphibians remains unexplored. We measured total Hg (THg) in wetland sediments and methylmercury (MeHg) in multiple life-stages (eggs to adults) of wood frogs (Rana sylvatica) and larval boreal chorus frogs (Pseudacris maculata) from up to 25 wetlands near Churchill, Manitoba (Canada), during the summers of 2018-2019.

View Article and Find Full Text PDF

Microbial communities in the phyllosphere and endosphere of Norway spruce under attack by .

Front Microbiol

January 2025

Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.

species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability.

View Article and Find Full Text PDF

Wildfires: Burning our way to a 'hot house Earth'?

Curr Biol

January 2025

Fire Centre, Discipline of Biological Sciences, School of Natural Sciences, Private Bag 55, University of Tasmania, Hobart, TAS 7001, Australia.

A new global analysis shows that wildfires turn temperate and boreal forests into major emitters of greenhouse gases - instead of storing carbon. Without sustainable forest fire management, forest fires may amplify climate change, leading to irreversible ecological changes.

View Article and Find Full Text PDF

Permafrost soils store vast amounts of organic carbon, and their thawing due to climate warming accelerates the release of carbon as methane and carbon dioxide, exacerbating global climate change. Understanding the distribution of greenhouse gases trapped in these soils and predicting their behavior upon thawing is essential for accurately modeling climate feedbacks. This study presents an integrated biogeochemical and microbial dataset from ~1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!