The influence of three sugar osmolytes on the refolding of guanidine hydrochloride- (GdnHCl-) denatured trehalose-6-phosphate hydrolase of Bacillus licheniformis (BlTreA) was studied by circular dichroism (CD) spectra, fluorescence emission spectra, and the recovery of enzymatic activity. These experimental results clearly indicated that sorbitol, sucrose, and trehalose at a concentration of 0.75 M improved the refolding yields of GdnHCl-denatured BlTreA, probably due to the fact that these sugars favored the formation of tertiary architectures. Far-UV CD measurements demonstrated the ability of sugar osmolytes to shift the secondary structure of GdnHCl-denatured enzyme towards near-native conformations. ANS fluorescence intensity measurements revealed a reduction of exposed hydrophobic surfaces upon the treatment of denatured enzyme with sugar osmolytes. These observations suggest that sugar osmolytes possibly play a chaperone role in the refolding of chemically denatured BlTreA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309298 | PMC |
http://dx.doi.org/10.1155/2015/806847 | DOI Listing |
BMC Plant Biol
January 2025
Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.
View Article and Find Full Text PDFProtoplasma
December 2024
School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.
Sucrose (SUC) is a signaling molecule with multiple physiological functions. G protein is a kind of receptor that converts extracellular first messenger into intracellular second messenger. However, it is little known that SUC interplays with G protein signaling in maize thermotolerance.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Botany, Jamia Hamdard, New Delhi, 110062, India. Electronic address:
Heavy metal stress is one of the exorbitant problems faced by plants. Lead (Pb) stress is one of the prevalent stressors in agricultural fields. Nanofertilizers are being currently employed for mitigating heavy metal stress in plants.
View Article and Find Full Text PDFFront Microbiol
November 2024
College of Horticulture and Gardening, Yangtze University, Jingzhou, China.
Introduction: Temporary and extended drought stress accelerates phytohormones and reactive oxygen species (ROS) in plants, however, the fate of the plants under stress is mostly determined by the metabolic and molecular reprogramming, which can be modulated by the application of habitat-adapted fungi that triggers resistance to stress upon symbiotic association.
Methods: The present research exhibited the exploitation of the newly isolated, drought habitat-adapted fungal endophytic consortium of SAB () and CBW (), on maize under drought stress. SAB and CBW primarily hosted the root tissues of L.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!