Autophagy is a predominant eukaryotic mechanism for the engulfment of "portions" of cytoplasm allowing their degradation to recycle metabolites. The autophagy is ubiquitous among the life kingdom revealing the importance of this pathway that appears more complex than previously thought. Several reviews have already addressed how to monitor this pathway and have highlighted the existence of new routes such as the LC3-associated phagocytosis (LAP) and the non-canonical autophagy. The principal difference between autophagosomes and LAP vacuoles is that the former has two limiting membranes positives for LC3 whereas the latter has one. Herein, we propose to emphasize the use of correlative light electron microscopy (CLEM) to answer some autophagy's related questions. The structured illumination microscopy (SIM) relatively easy to implement allows to better observe the Atg proteins recruitment and localization during the autophagy process. While LC3 recruitment is performed using light microscopy the ultrastructural morphological analysis of LC3-vacuoles is ascertained by electron microscopy. Hence, these combined and correlated approaches allow to tackle the LAP vs. autophagosome issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2015.01.017 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.
The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.
View Article and Find Full Text PDFLangmuir
January 2025
Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315211 Ningbo, P. R. China.
Solar-driven desalination technology is currently an important way to obtain freshwater resources. Significantly, porous materials are used as substrate materials of interface solar evaporator, and their specific impact of water transport property and thermal management during evaporation is worth exploring. In this paper, poly(vinyl alcohol) (PVA) sponges were prepared by a chemical foaming method, adjusted the PVA polymerization degree, and formaldehyde-hydroxyl ratio to regulate the pore size, and polypyrrole (PPy) was grown in situ on the surface skeleton of PVA sponge to construct a new interfacial solar evaporator (PPy/PVA) with different pore structures.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.
View Article and Find Full Text PDFNanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!