Purpose: Metal artifacts during computed tomography (CT) hinder the evaluation of diagnostic images and impair the delineation of tumor volume in treatment planning. Several solutions are available to minimize these artifacts. Our objective was to determine the impact of one of those tools on the interreader variability when measuring head and neck structures in the presence of metal artifacts.
Methods And Materials: Eleven patients were retrospectively selected from an institutional review board-approved study based on the presence of metallic artifacts in the head and neck region. CT raw data were postprocessed using a metal artifact reduction tool. A single matching CT slice from the filtered backprojection and postprocessed data sets was selected in the region of the metal artifact. Areas of selected anatomical structures were measured by independent readers, including an anatomical structure selected from a CT slice with no metal artifact in each patient as control. The intraclass correlation coefficient was calculated.
Results: Two extreme outliers were identified and the intraclass correlation coefficient was performed with and without them. The intraclass correlation on filtered backprojection, postprocessed, and control images was 0.903, 0.948, and 0.985 with outliers and 0.884, 0.971, and 0.989 without outliers, respectively, for all readers. On the other hand, the intraclass correlation on filtered backprojection, postprocessed, and control images for experienced readers was 0.904, 0.979, and 0.976 with outliers and 0.934, 0.975, and 0.990 without outliers, respectively.
Conclusions: The interreader variability of areas measured in the presence of metal artifact was greatly decreased by the use of the metal artifact reduction tool and almost matched the variability observed in the absence of the metal artifact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prro.2014.12.007 | DOI Listing |
JACC Cardiovasc Interv
January 2025
Department of Cardiology, Ehime Prefectural Imabari Hospital, Imabari, Japan.
Nat Protoc
January 2025
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy.
Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Department of Cardiovascular Surgery, Jichi Medical University Saitama Medical Center, 1- 847 Amanuma-Cho, Omiya-Ku, Saitama, 330-8503, Japan.
This study aimed to evaluate the efficacy of the single-energy metal artifact reduction (SEMAR) algorithm in reducing metal artifacts and enhancing image quality in contrast-enhanced computed tomography (CT) for patients undergoing endovascular aneurysm repair (EVAR) with coil embolization. Thirty-eight patients (mean age 81.0 ± 6 years; 31 men, 7 women) who underwent contrast-enhanced CT following EVAR and internal iliac artery coil embolization between September 2022 and May 2023 were retrospectively analyzed.
View Article and Find Full Text PDFCureus
December 2024
Department of Neurological Surgery, Ryofukai Satoh Neurosurgical Hospital, Fukuyama, Hiroshima, JPN.
Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Trauma and Orthopaedic Surgeon, Cork University Hospital, Ireland.
Introduction: In this article, we report a unique case of head-stem dissociation in a metal-on-metal total hip replacement which utilized an Exeter stem. Although metallosis and pseudotumor formation are well recognized complications of metal-on-metal hip replacements, head-stem dissociations are rare with few being reported in literature. To the best of our knowledge, this case report is the first to report this occurrence in an Exeter stem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!