Design and development of a medical big data processing system based on Hadoop.

J Med Syst

Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.

Published: March 2015

Secondary use of medical big data is increasingly popular in healthcare services and clinical research. Understanding the logic behind medical big data demonstrates tendencies in hospital information technology and shows great significance for hospital information systems that are designing and expanding services. Big data has four characteristics--Volume, Variety, Velocity and Value (the 4 Vs)--that make traditional systems incapable of processing these data using standalones. Apache Hadoop MapReduce is a promising software framework for developing applications that process vast amounts of data in parallel with large clusters of commodity hardware in a reliable, fault-tolerant manner. With the Hadoop framework and MapReduce application program interface (API), we can more easily develop our own MapReduce applications to run on a Hadoop framework that can scale up from a single node to thousands of machines. This paper investigates a practical case of a Hadoop-based medical big data processing system. We developed this system to intelligently process medical big data and uncover some features of hospital information system user behaviors. This paper studies user behaviors regarding various data produced by different hospital information systems for daily work. In this paper, we also built a five-node Hadoop cluster to execute distributed MapReduce algorithms. Our distributed algorithms show promise in facilitating efficient data processing with medical big data in healthcare services and clinical research compared with single nodes. Additionally, with medical big data analytics, we can design our hospital information systems to be much more intelligent and easier to use by making personalized recommendations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-015-0220-8DOI Listing

Publication Analysis

Top Keywords

big data
32
medical big
28
data
12
data processing
12
hospital systems
12
big
8
processing system
8
healthcare services
8
services clinical
8
hadoop framework
8

Similar Publications

Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is a clear correlation with poor prognosis. In the past 20 years, the research on EBI has increased rapidly. However, there is a lack of bibliometric analysis related to EBI.

View Article and Find Full Text PDF

: The purpose of the present study was to evaluate the level of physical capacities of Italian American Football (AF) players and compare their performances with published data of American college players. A secondary aim was to assess whether the performance of Italian players in the NFL Combine tests has improved over time compared to previously tested players of similar competitive level. A total of 41 Italian AF players (age 28.

View Article and Find Full Text PDF

Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell-cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!