Recent decades have seen an increasing interest in chemicals that interact with the endocrine system and have the potential to alter the normal function of this system in humans and wildlife. Chemicals that produce adverse effects caused by interaction with endocrine systems are termed Endocrine Disrupters (EDs). This interest has led regulatory authorities around the world (including the European Union) to consider whether potential endocrine disrupters should be identified and assessed for effects on human health and wildlife and what harmonised criteria could be used for such an assessment. This paper reviews the results of a study whereby toxicity data relating to human health effects of 98 pesticides were assessed for endocrine disruption potential using a number of criteria including the Specific Target Organ Toxicity for repeat exposure (STOT-RE) guidance values used in the European Classification, Labelling and Packaging (CLP) Regulation. Of the pesticides assessed, 27% required further information in order to make a more definitive assessment, 14% were considered to be endocrine disrupters, more or less likely to pose a risk, and 59% were considered not to be endocrine disrupters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2015.01.011 | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFHeliyon
January 2025
Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary.
The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles.
View Article and Find Full Text PDFSoa Chongsonyon Chongsin Uihak
January 2025
Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.
Objectives: This study investigated the relationship between exposure to endocrine-disrupting chemicals (EDCs), specifically phthalates, bisphenol A, bisphenol F, and bisphenol S, and the severity of attention-deficit/hyperactivity disorder (ADHD) symptoms using neuropsychological tests in children diagnosed with ADHD.
Methods: This study included 67 medication-naïve children with ADHD aged 6-16 years. The urinary concentrations of EDCs were measured, and ADHD symptom severity was evaluated using neuropsychological tests and clinical symptom scale measurements.
Ecotoxicol Environ Saf
January 2025
Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety),Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China. Electronic address:
Zearalenone (ZEA), produced by Fusarium, is a fungal toxin commonly found in maize, wheat, and other cereals. ZEA has the ability to bind to estrogen receptors of humans and animals and is an environmental endocrine disruptor that may interfere with glucose homeostasis and lipid metabolism. In this study, we first investigated the effects of chronic exposure to low doses of ZEA with a high-fat-diet (HFD) in obese C57BL/6 J mice.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, United States.
The growing concern over environmental pollution has spurred extensive research into various contaminants impacting ecosystems and human health. Emerging contaminants (ECs), including pharmaceuticals, personal care products, endocrine-disrupting chemicals, nanomaterials, and microplastics, have garnered significant attention due to their persistence, bioaccumulation, and toxicity. This study presents a comprehensive bibliometric analysis of EC research, aiming to detail the research landscape, highlight significant contributions, and identify influential researchers and pivotal studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!