Physics instruction induces changes in neural knowledge representation during successive stages of learning.

Neuroimage

Center for Cognitive Brain Imaging, Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Published: May 2015

Incremental instruction on the workings of a set of mechanical systems induced a progression of changes in the neural representations of the systems. The neural representations of four mechanical systems were assessed before, during, and after three phases of incremental instruction (which first provided information about the system components, then provided partial causal information, and finally provided full functional information). In 14 participants, the neural representations of four systems (a bathroom scale, a fire extinguisher, an automobile braking system, and a trumpet) were assessed using three recently developed techniques: (1) machine learning and classification of multi-voxel patterns; (2) localization of consistently responding voxels; and (3) representational similarity analysis (RSA). The neural representations of the systems progressed through four stages, or states, involving spatially and temporally distinct multi-voxel patterns: (1) initially, the representation was primarily visual (occipital cortex); (2) it subsequently included a large parietal component; (3) it eventually became cortically diverse (frontal, parietal, temporal, and medial frontal regions); and (4) at the end, it demonstrated a strong frontal cortex weighting (frontal and motor regions). At each stage of knowledge, it was possible for a classifier to identify which one of four mechanical systems a participant was thinking about, based on their brain activation patterns. The progression of representational states was suggestive of progressive stages of learning: (1) encoding information from the display; (2) mental animation, possibly involving imagining the components moving; (3) generating causal hypotheses associated with mental animation; and finally (4) determining how a person (probably oneself) would interact with the system. This interpretation yields an initial, cortically-grounded, theory of learning of physical systems that potentially can be related to cognitive learning theories by suggesting links between cortical representations, stages of learning, and the understanding of simple systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2014.12.086DOI Listing

Publication Analysis

Top Keywords

neural representations
16
stages learning
12
mechanical systems
12
representations systems
12
changes neural
8
incremental instruction
8
systems
8
assessed three
8
multi-voxel patterns
8
mental animation
8

Similar Publications

More Than the Sum of Its Parts: Disrupted Core Periphery of Multiplex Brain Networks in Multiple Sclerosis.

Hum Brain Mapp

January 2025

Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Disruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modalities to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions from 13 European centers within the MAGNIMS network.

View Article and Find Full Text PDF

Siamese comparative transformer-based network for unsupervised landmark detection.

PLoS One

December 2024

National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China.

Landmark detection is a common task that benefits downstream computer vision tasks. Current landmark detection algorithms often train a sophisticated image pose encoder by reconstructing the source image to identify landmarks. Although a well-trained encoder can effectively capture landmark information through image reconstruction, it overlooks the semantic relationships between landmarks.

View Article and Find Full Text PDF

Bowel sounds, a reflection of the gastrointestinal tract's peristalsis, are essential for diagnosing and monitoring gastrointestinal conditions. However, the absence of an effective, non-invasive method for assessing digestion through auscultation has resulted in a reliance on time-consuming and laborious manual analysis by clinicians. This study introduces an innovative deep learning-based method designed to automate and enhance the recognition of bowel sounds.

View Article and Find Full Text PDF

The long-standing problem of geometric problem solving in artificial intelligence education has attracted widespread attention. It is necessary to combine geometry diagrams and text descriptions to form a logical representation. This involves combining the knowledge of mathematical theorems, generating a solution sequence, and executing to obtain the answer.

View Article and Find Full Text PDF

Differences in spatiotemporal dynamics for processing specific semantic categories: An EEG study.

Sci Rep

December 2024

Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea.

Semantic processing is an essential mechanism in human language comprehension and has profound implications for speech brain-computer interface technologies. Despite recent advances in brain imaging techniques and data analysis algorithms, the mechanisms underlying human brain semantic representations remain a topic of debate, specifically whether this occurs through the activation of selectively separated cortical regions or via a network of distributed and overlapping regions. This study investigates spatiotemporal neural representation during the perception of semantic words related to faces, numbers, and animals using electroencephalography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!