ORF3 is a supplemental open reading frame coding for an accessory glycoprotein gp3 of unknown function, only present in genotype I canine strain (CCoV-I) and some atypical feline FCoV strains. In these latter hosts, the ORF3 gene systematically displays one or two identical deletions leading to the synthesis of truncated proteins gp3-Δ1 and gp3-Δ2. As deletions in CoV accessory proteins have already been involved in tissue or host switch, studies of these different gp3 proteins were conducted in canine and feline cell. All proteins oligomerise through covalent bonds, are N-glycosylated and are maintained in the ER in non-infected but also in CCoV-II infected cells, without any specific retention signal. However, deletions influence their level of expression. In canine cells, all proteins are expressed with similar level whereas in feline cells, the expression of gp3-Δ1 is higher than the two other forms of gp3. None of the gp3 proteins modulate the viral replication cycle of heterologous genotype II CCoV in canine cell line, leading to the conclusion that the gp3 proteins are probably advantageous only for CCoV-I and atypical FCoV strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114440 | PMC |
http://dx.doi.org/10.1016/j.virusres.2015.01.027 | DOI Listing |
Pathogens
December 2024
Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA.
Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
The swine industry annually suffers significant economic losses caused by porcine reproductive and respiratory syndrome virus (PRRSV). Because the available commercial vaccines have limited protective efficacy against epidemic PRRSV, there is an urgent need for innovative solutions. Nanoparticle vaccines induce robust immune responses and have become a promising direction in vaccine development.
View Article and Find Full Text PDFPorcine Health Manag
October 2024
Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain.
Plant Dis
August 2024
University of Saskatchewan, Department of Plant Sciences, Agriculture Building, 51 Campus Dr., Saskatoon, Saskatchewan, Canada, S7N 5A2;
Bean leafroll virus (BLRV; Bean leafroll virus), a single-stranded RNA virus in the genus Luteovirus, is phloem-limited and primarily transmitted by aphids in a non-propagative, persistent manner (Rashed et al., 2018; Kidanemariam and Abraham, 2023). BLRV infects various legumes and has been reported from major pulse-growing regions worldwide (Agindotan et al.
View Article and Find Full Text PDFJ Nanobiotechnology
July 2024
MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!