A construct containing the CBM22-1-CBM22-2 tandem forming the N-terminal domain of Paenibacillus barcinonensis xylanase 10C (Xyn10C) has been purified and crystallized. A xylan-binding function and an affinity for mixed β-1,3/β-1,4 glucans have previously been demonstrated for some members of the CBM22 family. The sequence of the tandem is homologous to the N-terminal domains found in several thermophilic enzymes. Crystals of this tandem were grown by the streak-seeding method after a long optimization strategy. The structure has been determined by molecular replacement to a resolution of 2.43 Å and refinement is under way. This study represents the first structure containing two contiguous CBM22 modules, which will contribute to a better understanding of the role that this multiplicity plays in fine-tuning substrate affinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321464PMC
http://dx.doi.org/10.1107/S2053230X14027496DOI Listing

Publication Analysis

Top Keywords

n-terminal domain
8
domain paenibacillus
8
paenibacillus barcinonensis
8
barcinonensis xylanase
8
xylanase 10c
8
cbm22-1-cbm22-2 tandem
8
crystallization preliminary
4
preliminary x-ray
4
x-ray diffraction
4
diffraction analysis
4

Similar Publications

Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.

View Article and Find Full Text PDF

Opening of the cardiac voltage-gated Na+ channel (Nav1.5) is responsible for robust depolarization of the cardiac action potential, while inactivation, which rapidly follows, allows for repolarization. Regulation of both the voltage- and time-dependent kinetics of Nav1.

View Article and Find Full Text PDF

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!