Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22763DOI Listing

Publication Analysis

Top Keywords

high-throughput sequencing
8
reads
6
amplivar mutation
4
mutation detection
4
detection high-throughput
4
sequence
4
high-throughput sequence
4
sequence amplicon-based
4
amplicon-based libraries
4
libraries conventional
4

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and lethal malignancies worldwide. Despite progress in immunotherapy for cancer treatment, its application and efficacy in ESCC remain limited. Therefore, there is an ongoing need to explore potential molecules and therapeutic strategies related to tumor immunity in ESCC.

View Article and Find Full Text PDF

Deciphering SPP1-related macrophage signaling in the pathogenesis of intervertebral disc degeneration.

Cell Biol Toxicol

January 2025

Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.

This study delved into the molecular mechanisms underlying mechanical stress-induced intervertebral disc degeneration (msi-IDD) through single-cell and high-throughput transcriptome sequencing in mouse models and patient samples. Results exhibited an upsurge in macrophage presence in msi-IDD intervertebral disc (IVD) tissues, with secreted phosphoprotein 1 (SPP1) identified as a pivotal driver exacerbating degeneration via the protein kinase RNA-like endoplasmic reticulum kinase/ activating transcription factor 4/ interleukin-10 (PERK/ATF4/IL-10) signaling axis. Inhibition of SPP1 demonstrated promising outcomes in mitigating msi-IDD progression in both in vitro and in vivo models.

View Article and Find Full Text PDF

High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations.

Nat Commun

January 2025

Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.

A fundamental obstacle to tackling the antimicrobial resistance crisis is identifying mutations that lead to resistance in a given genomic background and environment. We present a high-throughput technique - Quantitative Mutational Scan sequencing (QMS-seq) - that enables quantitative comparison of which genes are under antibiotic selection and captures how genetic background influences resistance evolution. We compare four E.

View Article and Find Full Text PDF

Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution.

Cell

January 2025

State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. Electronic address:

During early mammalian development, the endoderm germ layer forms the foundation of the respiratory and digestive systems through complex patterning. This intricate process, guided by a series of cell fate decisions, remains only partially understood. Our study introduces innovative genetic tracing codes for 14 distinct endodermal regions using novel mouse strains.

View Article and Find Full Text PDF

Differential impacts of water diversion and environmental factors on bacterial, archaeal, and fungal communities in the eastern route of the South-to-North water diversion project.

Environ Int

January 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China. Electronic address:

Water diversion projects effectively mitigate the uneven distribution of water resources but can also influence aquatic biodiversity and ecosystem functions. Despite their importance, the impacts of such projects on multi-domain microbial community dynamics and the underlying mechanisms remain poorly understood. Utilizing high-throughput sequencing, we investigated bacterial, archaeal, and fungal community dynamics along the eastern route of the South-to-North water diversion project during both non-water diversion period (NWDP) and water diversion period (WDP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!