(K,Na)NbO3 nanofiber-based self-powered sensors for accurate detection of dynamic strain.

ACS Appl Mater Interfaces

Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, Hubei Province People's Republic of China.

Published: March 2015

A self-powered active strain sensor based on well-aligned (K,Na)NbO3 piezoelectric nanofibers is successfully fabricated through the electrospinning and polymer packaging process. The device exhibits a fast, active response to dynamic strain by generating impulsive voltage signal that is dependent on the amplitude of the dynamic strains and the vibration frequency. When the frequency is fixed at 1 Hz, the peak to peak value of the voltage increases from ∼1 to ∼40 mV, and the strain changes from 1 to 6%. Furthermore, the output voltage is linearly increased by an order of magnitude with the frequency changing from 0.2 to 5 Hz under the same strain amplitude. The influence of frequency on the output voltage can be further enhanced at higher strain amplitude. This phenomenon is attributed to the increased generating rate of piezoelectric charges under higher strain rate of the nanofibers. By counting the pulse separation of the voltage peaks, the vibration frequency is synchronously measured during the sensing process. The accuracy of the sensing results can be improved by calibration according to the frequency-dependent sensing behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5090012DOI Listing

Publication Analysis

Top Keywords

dynamic strain
8
vibration frequency
8
output voltage
8
strain amplitude
8
higher strain
8
strain
7
voltage
5
frequency
5
knanbo3 nanofiber-based
4
nanofiber-based self-powered
4

Similar Publications

We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate.

View Article and Find Full Text PDF

Nanomechanical responses (force-time profiles) of crystal lattices under deformation exhibit random critical jumps, reflecting the underlying structural transition processes. Despite extensive data collection, interpreting dynamic critical responses and their underlying mechanisms remains a significant challenge. This study explores a microscopic theoretical approach to analyse critical force fluctuations in martensitic transitions.

View Article and Find Full Text PDF

Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain .

View Article and Find Full Text PDF

Salmonella Dublin is a serovar that causes severe infections and cattle. Despite the importance of this agent, research on achieving its elimination from dairy farms is limited, which complicates risk mitigation and control efforts. This study thus aimed to assess the prevalence of S.

View Article and Find Full Text PDF

The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!