To investigate the feasibility of the anti-mucin 1 (anti-MUC1/CD227) antibody in the fluorescent imaging of ovarian cancer, the CD227 antibody and a control IgG antibody were labeled with a near-infrared dye [Cy5.5-N-hydroxysuccinimide (NHS)] and a green dye (fluorescein-NHS). fluorescence images were obtained at 4, 12 and 36 h after injection of the probes into OVCAR3 tumor-bearing mice. The tumor to background ratios were calculated for both probes. fluorescence images were obtained following sacrifice at 36 h. After conjugation to Cy5.5 and fluorescein, the dual-color labeled CD227 probe (Ab-FL-Cy5.5) could be visualized by both green and near-infrared fluorescence. Uptake by the tumors was higher for the Ab-FL-Cy5.5 than for the IgG-Cy5.5 probe. All tumors could be visualized by imaging with an acceptable tumor to background ratio. studies demonstrated the advantages of using green fluorescence imaging to guide the resection of tumor tissues. These preliminary data indicate that the Ab-FL-Cy5.5 probe is promising for further tumor imaging applications and clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315008PMC
http://dx.doi.org/10.3892/ol.2014.2807DOI Listing

Publication Analysis

Top Keywords

dual-color labeled
8
imaging ovarian
8
ovarian cancer
8
fluorescence images
8
tumor background
8
imaging
5
labeled anti-mucin
4
antibody
4
anti-mucin antibody
4
antibody imaging
4

Similar Publications

Miniature fluorescence microscopes (miniscopes) are one of the most powerful and versatile tools for recording large scale neural activity in freely moving rodents with single cell resolution. Recent advances in the design of genetically encoded calcium indicators (GECIs) allow to target distinct neuronal populations with non-overlapping emission spectral profiles. However, conventional miniscopes are limited to a single excitation, single focal plane imaging, which does not allow to compensate for chromatic aberration and image from two spectrally distinct calcium indicators.

View Article and Find Full Text PDF

Motor Function of the Two-Component EEA1-Rab5 Revealed by dcFCCS.

Methods Mol Biol

December 2024

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.

Fluorescence correlation spectroscopy (FCS) enables the measurement of fluctuations at fast timescales (typically few nanoseconds) and with high spatial resolution (tens of nanometers). This single-molecule measurement has been used to characterize single-molecule transport and flexibility of polymers and biomolecules such as DNA and RNA. Here, we apply this technique as dual-color fluorescence cross-correlation spectroscopy (dcFCCS) to identify the motor function of the tethering protein EEA1 and the small GTPase Rab5 by probing the flexibility changes through end-monomer fluctuations.

View Article and Find Full Text PDF

A two-color fluorescence sensing strategy based on functionalized tetrahedral DNAzyme nanotweezers for ochratoxin A detection.

Talanta

December 2024

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China. Electronic address:

A two-color fluorescent sensing strategy based on a functionalized tetrahedral DNAzyme nanotweezer (FTDN) was developed to detect ochratoxin A (OTA) utilizing the multifunctional properties of DNA nanotechnology. The FTDN enables rapid OTA detection directly through a Cy5 fluorescent group, modified to respond to the target signal. Additionally, FTDN exhibits DNAzyme cutting activity in the presence of Mg ions, enabling it to traverse DNA nanoflower-functionalized magnetic beads.

View Article and Find Full Text PDF
Article Synopsis
  • Tetrazine (Tz)-embedded fluorescent probes are important in bioimaging due to their ability to produce fluorescence through a specific chemical reaction known as the inverse electron-demand Diels-Alder (iEDDA) reaction.
  • This study investigates how different structures of Tz probes affect their fluorescence when interacting with three types of dienophiles: trans-cyclooctene (TCO), bicyclo[6.1.0]nonyne (BCN), and spiro[2.3]hex-1-ene (Sph).
  • The researchers created a series of Seoul-Fluor-Tz (SFTz) probes that enable dual-color imaging of cells, highlighting the importance of the chemical
View Article and Find Full Text PDF

This study explores the novel application of pyronin Y for fluorescently labeling extracellular matrices (ECMs) and gelatin cryogels, providing a simple and reliable method for laser scanning confocal microscopy. Pyronin Y exhibited remarkable staining ability of the porous structures of gelatin cryogels, indicating its potential as a reliable tool for evaluating such biomaterials. Confocal imaging of pyronin Y-stained cryogels produced high signal-to-noise ratio images suitable for quantifying pores using Fiji/Image J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!