A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temporal endogenous gene expression profiles in response to polymer-mediated transfection and profile comparison to lipid-mediated transfection. | LitMetric

AI Article Synopsis

  • Efficient nonviral gene delivery systems are limited by a lack of understanding of the specific molecules involved in transfection.
  • Researchers used polyplexes with 25-kDa polyethylenimine and plasmids encoding GFP to test transfection efficiency in HEK 293T cells, tracking gene expression changes over time.
  • Key differentially expressed genes were identified at various time points, with some genes showing unique expression patterns in polyplexes versus lipoplexes, suggesting potential targets for enhancing gene delivery methods.
  • Overall, the findings indicate that certain genes and pharmacological agents can be explored to improve transfection systems, while considering the distinct dependencies of polyplexes and lipoplexes.

Article Abstract

Background: Design of efficient nonviral gene delivery systems is limited by the rudimentary understanding of specific molecules that facilitate transfection.

Methods: Polyplexes using 25-kDa polyethylenimine (PEI) and plasmid-encoding green fluorescent protein (GFP) were delivered to HEK 293T cells. After treating cells with polyplexes, microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h of exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels. Differentially expressed genes in polyplex-mediated transfection were compared with those differentially expressed in lipoplex transfection to identify DNA carrier-dependent molecular factors.

Results: Differentially expressed genes were RGS1, ARHGAP24, PDZD2, SNX24, GSN and IGF2BP1 after 2 h; RAP1A and ACTA1 after 8 h; RAP1A, WDR78 and ACTA1 after 16 h; and RAP1A, SCG5, ATF3, IREB2 and ACTA1 after 24 h. Pharmacologic studies altering endogenous levels for ARHGAP24, GSN, IGF2BP1, PDZD2 and RGS1 were able to increase or decrease transgene production. Comparing differentially expressed genes for polyplexes and lipoplexes, no common genes were identified at the 2-h time point, whereas, after the 8-h time point, RAP1A, ATF3 and HSPA6 were similarly expressed. SCG5 and PGAP1 were only upregulated in polyplex-transfected cells.

Conclusions: The identified genes and pharmacologic agents provide targets for improving transfection systems, although polyplex or lipoplex dependencies must be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.2822DOI Listing

Publication Analysis

Top Keywords

differentially expressed
24
expressed genes
16
pharmacologic agents
8
endogenous levels
8
gsn igf2bp1
8
time point
8
genes
7
expressed
7
transfection
6
differentially
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!